POISSON PROBLEM FOR A LINEAR FUNCTIONAL DIFFERENTIAL EQUATION

Обложка

Цитировать

Полный текст

Аннотация

The solvability, existence and positiveness of the Green function of the Poisson problem -∆u- Ωu y -u x r x,dy =ρf, u | Γ( Ω) =0 are showed. The spectral properties of corresponding eigenvalue problem are considered. Here Ω is an open set in R N and ΓΩ is the boundary of the Ω . For almost all x ϵ Ω, r x,∙ is a measure satisfying certain symmetry condition. The function ρ is a positive weight. This problem has a clear mechanical interpretation.

Об авторах

Сергей Михайлович Лабовский

Российский экономический университет им. Г. В. Плеханова

Email: labovski@gmail.com
кандидат физико-математических наук, доцент кафедры высшей математики г. Москва, Российская Федерация

- Жетимане Марио Френге

Институт транспорта и сообщений

Email: mgetimane@isutc.transcom.co.mz
доцент кафедры математики Мапуто, Мозамбик

Список литературы

  1. Labovskii S.M. On the Sturm-Liouville problem for a linear singular functional-differential equation // Russ. Math., 1996. V. 40, № 11. P. 50-56. (English. Russian original. Translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1996, № 11 (414), 48-53).Labovskii S. Little vibrations of an abstract mechanical system and corresponding eigenvalue problem // Functional Differential Equations, 1999. V. 6, № 1-2. P. 155-167.Labovskiy S. On spectral problem and positive solutions of a linear singular functional differential equation // Functional Differential Equations, 2013. V. 20, № 3-4. P. 179-200.Adams R.A. and Fournier J. Sobolev Spaces // Elsevier, 2003.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).