A counterexample to the stochastic version of the Brouwer fixed point theorem
- Authors: Ponosov A.V.1
-
Affiliations:
- Norwegian University of Life Sciences
- Issue: Vol 26, No 134 (2021)
- Pages: 143-150
- Section: Articles
- URL: https://journal-vniispk.ru/2686-9667/article/view/294985
- DOI: https://doi.org/10.20310/2686-9667-2021-26-134-143-150
- ID: 294985
Cite item
Full Text
Abstract
About the authors
Arcady V. Ponosov
Norwegian University of Life Sciences
Email: arkadi@nmbu.no
Doctor of Natural Sciences, Professor of the Institute of Mathematics P.O. Box 5003, №-1432, ˚As 5003, Norway
References
- B.N. Sadovskii, “A fixed-point principle”, Funct. Anal. Appl., 1:2 (1967), 151-153.
- J. Jacod, J. Memin, “Existence of weak solutions for stochastic differential equations with driving semimartingales”, Stochastics, 4 (1981), 317-337.
- A. Ponosov, “Fixed point method in the theory of stochastic differential equations”, Soviet Math. Doklady, 37:2 (1988), 426-429.
- J. Appell, P.P. Zabreiko, Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2008, 311 pp.
- A. Ponosov, “On the Nemytskii conjecture”, Soviet Math. Doklady, 34:1 (1987), 231-233.
- X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing ltd., Chichester, 1997, 366 pp.
- B. Шksendal, Stochastic Differential Equations, Universitext, Springer-Verlag Berlin Heidelberg, Berlin, 2013, 379 pp.
- A. Ponosov, “Local operators and stochastic differential equations”, Functional Differential Equations, 4:1-2 (1997), 73-89.
- G.Di Nunno, B. Шksendal, F. Proske, Malliavin Calculus for Lґevy Processes with Applications to Finance, Universitext, Springer-Verlag Berlin Heidelberg, Berlin, 2009, 418 pp.
- D.H. Wagner, “Survey of measurable selection theorems”, SIAM J. Control and Optimization, 15:5 (1977), 859-903.
- I. V. Shragin, “Abstract Nemytskii operators are locally defined operators”, Soviet Math. Doklady, 17:2 (1976), 354-357.
- A. Ponosov, E. Stepanov, “Atomic operators, random dynamical systems and invariant measures”, St. Petersburg Math. J., 26 (2015), 607-642.
- S. G. Krantz, Function Theory of Several Complex Variables: Second Edition. V. 340, AMS Chelsea Publishing, Providence, 1992.
- Hu Sze-Tsen, Theory of Retracts, Wayne State University Press, Detroit, 1965, 234 pp.
Supplementary files
