Identification of Characteristics of Employee’s Individual Human Capital with Data on Self-Reports of Professional Skills and Personal Characteristics
- Авторлар: Stoliarova V.F1, Tulupyeva T.V1, Abramov M.V1, Salakhova V.B2
-
Мекемелер:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
- Center research security problems the RAS
- Шығарылым: Том 22, № 1 (2023)
- Беттер: 190-214
- Бөлім: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/265801
- DOI: https://doi.org/10.15622/ia.22.1.8
- ID: 265801
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
V. Stoliarova
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: vfs@dscs.pro
14-th Line V.O. 39
T. Tulupyeva
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: tvt@dscs.pro
14-th Line V.O. 39
M. Abramov
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: mva@dscs.pro
14-th Line V.O. 39
V. Salakhova
Center research security problems the RAS
Email: Valentina_naula@mail.ru
Garibaldi St. 21Б
Әдебиет тізімі
- Dastile X., Celik T., Potsane M. Statistical and machine learning models in credit scoring: A systematic literature survey // Applied Soft Computing. 2020. vol. 91. pp. 106263.
- Djeundje V.B., Crook J., Calabrese R., Hamid M. Enhancing credit scoring with alternative data // Expert Systems with Applications. 2021. vol. 163. pp. 113766.
- Абрамов М.В., Тулупьева Т.В., Тулупьев А.Л. Социоинженерные атаки: социальные сети и оценки защищенности пользователей. СПб.: ГУАП, 2018. 266 с.
- Олисеенко В.Д., Абрамов М.В., Тулупьев А.Л., Иванов К.А. Прототип программного комплекса для анализа аккаунтов пользователей социальных сетей: веб-фреймворк Django // Программные продукты и системы. 2022. Т. 35. № 1. С. 45–53. doi: 10.15827/0236-235X.137.
- Khlobystova A., Korepanova A., Maksimov A., Tulupyeva T. An Approach to Quantification of Relationship Types between Users Based on the Frequency of Combinations of Non-numeric Evaluations // Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). Advances in Intelligent Systems and Computing. 2020. vol. 1156. pp. 206—213.
- Kashevnik A., Karelskaya K., Repp M. Dangerous situations determination by smartphone in vehicle cabin: Classification and algorithms // 2019 24th Conference of Open Innovations Association (FRUCT). IEEE, 2019. С. 130–139.
- Shirmohammadi H., Hadadi F., Saeedian M. Clustering analysis of drivers based on behavioral characteristics regarding road safety // International Journal of Civil Engineering. 2019. vol. 17. no. 8. pp. 1327-1340.
- Wang X., Xu X. Assessing the relationship between self-reported driving behaviors and driver risk using a naturalistic driving study // Accident Analysis & Prevention. 2019. vol. 128. pp. 8–16.
- Boudreaux M.J., Ferrell B.T., Hundley N.A., Sherman R.A. A personality-based measure of employability // Journal of Personnel Psychology. 2022. vol. 21. no. 1. pp. 11–22.
- Sharma M., Luthra S., Joshi S., Kumar A. Analysing the impact of sustainable human resource management practices and industry 4.0 technologies adoption on employability skills // International Journal of Manpower. 2022. vol. 43. no. 2. pp. 463–485.
- Nicolaescu S.S., Florea A., Kifor C.V., Fiore U., Cocan N., Receu I., Zanetti P. Human capital evaluation in knowledge-based organizations based on big data analytics // Future Generation Computer Systems. 2020. vol. 111. pp. 654–667.
- Wright P.M., McMahan G.C. Exploring human capital: putting ‘human’back into strategic human resource management // Human resource management journal. 2012. vol. 21. no. 2. pp. 93–104.
- Fajaryati N., Akhyar M. The employability skills needed to face the demands of work in the future: Systematic literature reviews // Open Engineering. 2020. vol. 10. no. 1. pp. 595–603.
- Smaldone F., Ippolito A., Lagger J., Pellicano M. Employability skills: Profiling data scientists in the digital labour market // European Management Journal. 2022. vol. 40. no. 5, pp. 671-684.
- Ployhart R.E., Moliterno T.P. Emergence of the human capital resource: A multilevel model // Academy of management review. 2011. vol. 36. no. 1. pp. 127–150.
- Zhang Y., Xu S., Zhang L., Yang M. Big data and human resource management research: An integrative review and new directions for future research // Journal of Business Research. 2021. vol. 133. pp. 34–50.
- Liu J. Impact of enterprise human capital on technological innovation based on machine learning and SVM algorithm // Journal of Ambient Intelligence and Humanized Computing. 2021. pp. 1-13.
- Fleenor J.W., Taylor S., Chappelow C. Leveraging the impact of 360-degree feedback // Berrett-Koehler Publishers, Incorporated. 2020. 184 p.
- Эфендиев А.Г., Гоголева А.С., Пашкевич А.В., Балабанова Е.С. Ценностно–мотивационные основы и реальность трудовой жизни российских работников: проблемы и противоречия // Мир России. Социология. Этнология. 2020. 29(2). C. 108–133.
- Kassambara A. Practical guide to cluster analysis in R: Unsupervised machine learning // STHDA. 2017. 187 p.
- Forsman H., Jansson I., Leksell J., Lepp M., Sundin Andersson C., Engstrom M., Nilsson J. Clusters of competence: Relationship between self-reported professional competence and achievement on a national examination among graduating nursing students // Journal of Advanced Nursing. 2020. vol. 76. no. 1. pp. 199–208.
- Schmid M., Brianza E., Petko D. Self-reported technological pedagogical content knowledge (TPACK) of pre-service teachers in relation to digital technology use in lesson plans // Computers in Human Behavior. 2021. vol. 115. pp. 106586.
- Yang L., Sang-Bing T. Construction of a Hierarchical Neural Network Power Source Model for Human Capital Technology Innovation and Benefit Distribution with Big Data Analysis // Mathematical Problems in Engineering. 2021. vol. 2021. pp. 3939511.
- Li X., Zhang P. A research on value of individual human capital of high-tech enterprises based on the bp neural network algorithm // The 19th International Conference on Industrial Engineering and Engineering Management. Berlin: Springer, 2013. pp. 71-79.
- Baron A. Measuring human capital // Strategic HR Review. 2011. vol. 10. no 2. pp. 30–35.
- Гончарова Е.А., Рукин К.Н. Использование методики ассессмент-центра при оценке государственных гражданских служащих Липецкой области // Государственная служба. 2021. Т. 23. № 3(131). С. 24–32.
- Литвина С.А., Еварович С.А. Ассессмент-центр как технология оценки компетенций персонала в практике государственного управления: учебное пособие. Томск: Томский государственный университет, 2013. 104 с.
- Родионова Е.А. Психологические факторы эффективности сотрудников современного предприятия // Общество. Коммуникация. Образование. 2011. Т. 2. № 124. С. 109–114.
- Hennig C., Meila M., Murtagh F., Rocci R. (Eds.). Handbook of cluster analysis // CRC Press, 2015. 730 p.
- Schubert E., Rousseeuw P.J. Faster k–medoids clustering: improving the PAM, CLARA, and CLARANS algorithms // International conference on similarity search and applications. Springer, Cham. 2019. pp. 171–187.
- Hennig C. Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods // Journal of Multivariate Analysis. 2009. vol. 99. pp. 1154–1176.
- Крокер Л., Алгина Д. Введение в классическую и современную теорию тестов. Учебник. М.:Логос, 2010. 668 с.
- Van der Linden W.J. Handbook of Item Response Theory, Volume One: Models. Chapman and Hall/CRC, 2016. 624 p.
- Van der Linden W.J. Handbook of Item Response Theory, Volume Three: Applications. Chapman and Hall/CRC, 2018. 608 p.
- Lang J.W., Tay L. The science and practice of item response theory in organizations // Annual Review of Organizational Psychology and Organizational Behavior. 2021. vol. 8. pp. 311–338.
- Cella D., Choi S.W., Condon D.M., Schalet B., Hays R.D., Rothrock N.E., Yount S., Cook K.F., Gershon R.C., Amtmann D., DeWalt D.A. PROMIS® adult health profiles: efficient short-form measures of seven health domains. Value in health. 2019. vol. 22. no. 5. pp. 537–544.
- De Jong M.G., Pieters R. Assessing sensitive consumer behavior using the item count response technique. Journal of Marketing Research. 2019. vol. 56. no. 3. pp. 345–360.
- Abele A.E., Spurk D. Volmer J. The construct of career success: measurement issues and an empirical example // ZAF. 2011. vol. 43. pp. 195–206.
- Hennig C. fpc: Flexible Procedures for Clustering. R package version 2.2-9. 2020. https://CRAN.R-project.org/package=fpc.
- Hogan R. Hogan development survey manual. Tulsa, OK: Hogan Assessment Systems, 2009. 199 p.
- Cattell R.B., Cattell H.E.P. Personality structure and the new fifth edition of the 16PF // Educational and Psychological Measurement. 1995. vol. 55. no. 6. pp. 926–937.
- Myers I.B. The Myers-Briggs Type Indicator: Manual. Consulting Psychologists Press, 1962. 110 p.
- Rizopoulo D. An R package for Latent Variable Modelling and Item Response Theory Analyses // Journal of Statistical Software. 2006. vol. 17. no. 5. pp. 1–25.
- Granovetter M. The strength of weak ties: A network theory revisited // Sociological theory. 1983. pp. 201–233.
Қосымша файлдар
