Вопросы создания машинопонимаемых SMART-стандартов на основе графов знаний

Обложка

Цитировать

Полный текст

Аннотация

Развитие цифровой трансформации требует широкого использования новых технологий в документах по стандартизации. Одной из задач является создание стандартов с машинопонимаемым содержанием, которые позволят использовать цифровые документы на различных этапах разработки и производства без необходимости участия человека-оператора. Целью данной работы является описание подхода для создания и перевода в машинопонимаемое представление нормативных документов отрасли для дальнейшего их использования в программных сервисах и системах. Содержимое SMART-стандарта бывает трех видов: машиночитаемое, машиноинтерпретируемое и машинопонимаемое. Для формализации данных и знаний при решении различных задач активно используются графы знаний. Предложен новый двухуровневый подход для создания и перевода в машинопонимаемое представление нормативных документов как графов знаний. Подход определяет два вида интерпретации такого документа (человекочитаемость и машинопонимаемость) через два связанных формата: граф, каждый семантический узел которого представляет текст на естественном языке, и сеть понятий и строгих связей. Каждому узлу «человекочитаемого» графа соответствует (в общем случае) поддерево машинопонимаемого графа знаний. В качестве основы для обеспечения преобразования одной формы представления SMART-стандарта в другую форму служат LLM модели, дополняемые специализированным адаптером, полученным в результате дообучения с помощью подхода Parameter-Efficient Fine-Tuning. Установлены требования к набору проблемно- и предметно-ориентированных инструментальных средств формирования графов знаний. Показана концептуальная архитектура системы поддержки решения комплекса задач на основе SMART-документов в виде графов, установлены принципы реализации программных компонентов, работающих со знаниями, для интеллектуальных программных сервисов.

Об авторах

Е. А Шалфеева

Институт автоматики и процессов управления Дальневосточного отделения РАН

Email: shalf@dvo.ru
улица Радио 5

В. В Грибова

Институт автоматики и процессов управления Дальневосточного отделения РАН

Email: gribova@iacp.dvo.ru
улица Радио 5

Список литературы

  1. Smart Standards – From a market and industry perspective // Societal and technology trend report. URL: https://www.iec.ch/system/files/2023-10/iec_sttr_smart_standards_en_lr_0.pdf (дата обращения: 18.03.2024).
  2. Елагин Ф.Н. Цифровые технологии стандартизации // Инновации и инвестиции. 2023. № 8. С. 243–246.
  3. Денисова О.А., Дмитриева С.Ю. SMART-стандарты: нормативные документы для цифровой экономики будущего // Стандарты и качество. 2023. № 6. С. 42–44.
  4. Предварительный национальный стандарт российской федерации. ПНСТ 864-2023. Умные (SMART) стандарты. Общие положения. Издание официальное. Москва: Российский институт стандартизации, 2023. URL: https://docs.cntd.ru/document/728306620 (дата обращения: 18.03.2024).
  5. Van de Kaa G., Stoccuto S., Calderón C.V. A battle over smart standards: Compatibility, governance, and innovation in home energy management systems and smart meters in the Netherlands // Energy Research & Social Science. 2021. vol. 82.
  6. Mutule A., Antoskova I., Papadimitriou C., Efthymiou V., Morch A. Development of Smart Grid Standards in View of Energy System Functionalities // 6th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, 2021. pp. 1–6. doi: 10.23919/SpliTech52315.2021.9566337.
  7. Peleg M. Computer-interpretable clinical guidelines: A methodological review // Journal of biomedical informatics. 2013. vol. 46. № 4. pp. 744–763.
  8. Young O., Shahar Y., Liel Y., Lunenfeld E., Bar G., Shalom E., Martins S., Vaszar L., Marom T., Goldstein M.K. Runtime application of Hybrid-Asbru clinical guidelines // Journal of biomedical informatics. 2007. vol. 40. no. 5. pp. 507–526.
  9. Novais P., Oliveira T., Satoh K., Neves J. The Role of Ontologies and Decision Frameworks in Computer-Interpretable Guideline Execution // Synergies between Knowledge Engineering and Software Engineering. 2018. vol. 626. pp. 197–216.
  10. Головин С.А., Лоцманов А.Н., Тихомиров С.Г. Цифровая трансформация стандартизации требует системного подхода и практических действий // ИТ-Стандарт. 2023. № 3. С. 4–22.
  11. Liu J., Peng G. Designing a Smart Standards Information Service: A Research Framework // International Conference on Human-Computer Interaction. Cham: Springer Nature Switzerland. 2023. pp. 348–365.
  12. Luttmer J., Ehring D., Pluhnau R., Kocks C., Nagarajah A. SMART Standards: Modularization Approach for Engineering Standards // Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 42nd Computers and Information in Engineering Conference. 2022. vol. 2(42). doi: 10.1115/DETC2022-88206.
  13. Zhong L., Wu J., Li Q., Peng H., Wu X. A Comprehensive Survey on Automatic Knowledge Graph Construction // ACM Computing Surveys. 2023. vol. 56. no. 4. pp. 1–62.
  14. Qu J. A Review on the Application of Knowledge Graph Technology in the Medical Field // Scientific Programming. 2022. vol. 2022. 12 p.
  15. Sezgin E., Hussain S.A., Rust S., Huang Y. Extracting medical information from free-text and unstructured patient-generated health data using natural language processing methods: feasibility study with real-world data // JMIR Formative Research. 2023. vol. 7.
  16. Melnyk I., Dognin P., Das P. Knowledge graph generation from text // arXiv preprint. 2022. arXiv:2211.10 511v1. 13 p.
  17. Ibáñez L-D., Domingue J., Kirrane S., Seneviratne O., Third A., Vidal M-E. Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination // arXiv preprint. 2023. arXiv:2310.19503. 33 p. doi: 10.48550/arXiv.2310.19503.
  18. Sajid H. Combining Large Language Models and Knowledge Graphs. URL: https://www.wisecube.ai/blog/combining-large-language-models-and-knowledge-graphs/ (дата обращения: 15.03.2024).
  19. Грибова В.В., Москаленко Ф.М., Тимченко В.А., Шалфеева Е.А. Платформа IACPaaS для разработки систем на основе онтологий: десятилетие использования // Искусственный интеллект и принятие решений. 2022. № 4. С 55–65.
  20. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 18. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/064/610/original/ВМР_COVID-19_V18.pdf (дата обращения: 15.03.2024).
  21. Клинические рекомендации. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. 2020. 157 с. URL: https://cardioweb.ru/files/glavny-kardiolog/rekomendation/%D0%9A%D0%BB%D0%B8%D0%BD_%D1%80%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%86%D0%B8%D0%B8_%D0%9E%D0%9A%D0%A1_%D1%81_%D0%BF%D0%BE%D0%B4%D1%8A%D0%B5%D0%BC%D0%BE%D0%BC_ST_2020.pdf (дата обращения: 18.03.2024).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».