Том 23, № 5 (2024)

Обложка

Весь выпуск

Искусственный интеллект, инженерия данных и знаний

Cоставление расписаний как задача удовлетворения ограничений (на примере планирования открытых горных работ)

Зуенко А.А., Олейник Ю.А.

Аннотация

Описываемые в статье исследования направлены на развитие методов составления расписаний. Принципиальным недостатком существующих методов смешано- целочисленного линейного программирования в применении к рассматриваемым задачам является то, что они слишком требовательны к объемам оперативной памяти. Сложность же применения процедур локального поиска к подобным задачам высокой размерности состоит в разработке эффективного способа нахождения приемлемого первоначального приближения и определении функции перехода в соседнее состояние, которая бы позволила достаточно быстро достичь оптимума. В теории исследования операций добавление к задаче дополнительных условий может привести к принципиальному изменению используемой схемы решения задачи. Предлагаемые в статье методы реализованы в рамках парадигмы программирования в ограничениях, что позволяет более экономно с точки зрения оперативной памяти представлять зависимости предметной области, а также обеспечивает возможность поэтапного учета разнородных условий задачи без принципиального изменения схемы поиска решений. Существенная часть исследований посвящена использованию методов логического вывода на ограничениях для снижения размерности пространства поиска и ускорения процесса вычислений. Подход к составлению расписаний проиллюстрирован на задаче оптимизации планирования открытых горных работ, которую впервые предложено решать как задачу удовлетворения ограничений. Для нахождения первого допустимого решения предложен метод «жадного» поиска, результат применения которого затем может быть улучшен с помощью разработанного гибридного метода. Оба метода опираются на оригинальные процедуры вывода на ограничениях. Предложенный подход доказал свою эффективность для блочных моделей размерностью в десятки и сотни тысяч блоков.
Информатика и автоматизация. 2024;23(5):1290-1310
pages 1290-1310 views

Использование онтологии для анализа английских комментариев в социальных сетях

Вьет Хунг Н., Тан Н., Тхи Туй Нга Н., Хуен Транг Л., Туй Ханг Т.

Аннотация

Чат-боты заинтересовывают многих пользователей по мере того, как технологии становятся все более продвинутыми. Потребность в обмене информацией между людьми через компьютерные системы увеличивается с каждым днем, в результате чего в большинстве стран растет предпочтение использовать чат-боты. Поскольку Вьетнам является развивающейся страной с множеством этнических групп, требуется усиленное внимание к распространению социальных сетей и расширению кооперативной экономики. Серьезной проблемой стало неуместное использование слов в повседневной жизни. В социальных сетях встречаются неоднозначные отзывы с похвалой и критикой о том, что мы пытаемся уменьшить использование негативной лексики и улучшить качество использования языка в социальных сетях. Мы стремимся удовлетворить потребности пользователей в социальных сетях, способствовать экономическому развитию и более эффективно решать социальные проблемы. Для достижения этих целей предлагается метод глубокого обучения, использующий интеллектуальный анализ онтологических знаний для сбора и обработки комментариев в социальных сетях. Этот подход направлен на улучшение пользовательского опыта и облегчение обмена информацией между людьми путем анализа мнений в комментариях. Результаты экспериментов показывают, что наш метод превосходит традиционный подход.

Информатика и автоматизация. 2024;23(5):1311-1338
pages 1311-1338 views

Подход к априорному оцениванию нечетких классификационных моделей в задачах мониторинга

Потюпкин А.А., Пилькевич С.В., Зайцев В.В.

Аннотация

Статья посвящена проблемам применения средств автоматизации при решении задач мониторинга и управления в части, касающейся оценки качества нечетких классификационных моделей, для которых порядок классификации реализуется на основании знаний (правил) в условиях отсутствия обучающей выборки. Предложен подход к получению априорных оценок качества классификации на основе исследования чувствительности используемой модели к изменению значений внутренних параметров в ходе соответствующего моделирования. Получена интерпретация результатов моделирования в виде оценки рисков, вызванных несовершенством самих классификационных моделей. В статье приведен пример нечеткой классификационной модели, в основе которой лежит сравнение текущего состояния объекта мониторинга, описываемого с использованием нечетких признаков, с набором заранее заданных типовых состояний, формирующих соответствующие нечетко равные между собой (близкие) состояния (ситуации мониторинга). Сравнение осуществляется с использованием операции нечеткой импликации при условии соблюдения требуемой достоверности. На примере данной модели показано, каким образом вид операции импликации, а также внутренние особенности модели влияют на результаты классификации, предложены соответствующие показатели, которые являются как интерпретацией общепринятых показателей оценки качества классификации, так и уникальными, присущими именно рассмотренной модели. Проведены вычислительные эксперименты, которые позволили получить графики изменения показателей оценки качества классификации для рассматриваемой модели и ее модификации, наглядно отобразить влияние внутренних параметров модели на результаты ее применения. Предложены ряд показателей, позволяющих провести априорную оценку рисков, возникающих вследствие применения модели, до ее фактического применения.
Информатика и автоматизация. 2024;23(5):1339-1366
pages 1339-1366 views

Кластеризация сетей с использованием алгоритма поиска косяков рыб

Ибрагим А.Х., Будреф М.А., Бадис Л.

Аннотация

Сеть представляет собой совокупность узлов, соединенных ребрами, которые представляют сущности и их взаимосвязи. В кластеризации социальных сетей узлы организованы в кластеры в соответствии с их шаблонами соединений с целью обнаружения сообществ. Выявление структур сообществ в сетях является важным. Однако существующие методы обнаружения сообществ еще не использовали потенциал алгоритма поиска косяков рыб (FSS) и принципов модулярности. Мы предложили новый метод, основанный на кластеризации с использованием алгоритма поиска рыбной школы и функции модулярности (FSC), который улучшает модулярность в кластеризации сети путем итерационного разбиения сети и оптимизации функции модулярности. Этот подход облегчает обнаружение высокомодулярных структур сообществ, улучшая разрешение и эффективность кластеризации сети. Мы протестировали FSC на известных и неизвестных структурах сетей. Также мы протестировали его на сети, сгенерированной с использованием модели LFR, чтобы проверить его производительность на сетях с различными структурами сообществ. Наша методология демонстрирует высокую эффективность в выявлении структур сообществ, что указывает на ее способность эффективно захватывать сплоченные сообщества и точно определять фактические структуры сообществ.

Информатика и автоматизация. 2024;23(5):1367-1397
pages 1367-1397 views

Эффективная реализация гамматон-фильтров на основе неравнополосного косинусно-модулированного банка фильтров

Порхун М.И., Вашкевич М.И.

Аннотация

В работе представлена эффективная реализация банка гамматон-фильтров (БГФ) на основе неравнополосного косинусно-модулированного банка фильтров (НКМБФ), использующего фазовое преобразование. Рассмотрены примеры практических задач, в которых применяется банк гамматон-фильтров, проанализированы его основные особенности и недостатки. Приведено описание равнополосного косинусно-модулированного банка фильтров, а также показан процесс синтеза НКМБФ из его равнополосного аналога при помощи фазового преобразования. Разработан оптимизационный метод проектирования фильтра-прототипа НКМБФ для аппроксимации частотных характеристик БГФ. В основе метода лежит мультипликативная модель импульсной характеристики фильтра-прототипа, использующая логистические сигмоидальные функции. Суть предлагаемого метода заключается в оптимизации фильтра-прототипа с целью минимизации среднеквадратичной ошибки между АЧХ БГФи НКМБФ для каждого канала. Выполнена программная реализация на языке Python с использованием библиотеки PyTorch. Проведены экспериментальные исследования предложенного метода. Результаты экспериментов показали, что НКМБФ можно использовать для аппроксимации частотных характеристик БГФ, а результирующая АЧХ имеет монотонные спады за счёт использования логистических сигмоидальных функций. Проведён анализ зависимости результирующей ошибки аппроксимации частотных характеристик банка гамматон-фильтров от количества сигмоид, используемых для синтеза фильтра-прототипа НКМБФ на базе мультипликативной модели импульсной характеристики. Выполнен анализ вычислительной сложности НКМБФ, показано как зависит число операций сложения и умножения от длины импульсной характеристики фильтра-прототипа и числа каналов банка фильтров. Сделан вывод, что использование НКМБФ для реализации банка гамматон-фильтров позволяет существенно уменьшить вычислительные затраты на реализацию гамматон-фильтров по сравнению с прямой реализацией.
Информатика и автоматизация. 2024;23(5):1398-1422
pages 1398-1422 views

Алгоритм Rivest-Shamir-Adleman, оптимизированный для защиты устройств Интернета вещей от конкретных атак

Дженифер Р., Пракаш В.Д.

Аннотация

Устройства Интернета вещей играют важнейшую роль в современном мире во многих отношениях, поскольку они обеспечивают поддержку для зондирования окружающей среды, автоматизации и ответственного сохранения ресурсов. В «умном» мире повсеместное присутствие устройств Интернета вещей в повседневной жизни неизбежно. Широкое использование устройств Интернета вещей привлекает к себе любопытные взгляды злонамеренных хакеров. Несмотря на то, что существует несколько систем и протоколов безопасности, доступных для обычных беспроводных сетей, наблюдается необходимость в разработке современного механизма безопасности исключительно для сетевых сред Интернета вещей. Эта работа представляет улучшения безопасности сетей Интернета вещей. В ней собраны три специализированных способа для достижения более высоких показателей безопасности в сетевых средах Интернета вещей. Fast Fuzzy Anomaly Detector, Legacy Naïve Bayes Attack Classifiers и Variable Security Schemer of Rivest-Shamir-Adleman algorithm – это новые модули, представленные в этой работе, сокращенно ASORI. Уникальные преимущества встроенного механизма сертификации Интернета вещей и выбор динамической стратегии безопасности являются новшествами, представленными в данной работе. Модель ASORI была проверена с использованием промышленного стандартного симулятора сети OPNET для обеспечения улучшенной безопасности наряду с существенными улучшениями параметров производительности сети.

Информатика и автоматизация. 2024;23(5):1423-1453
pages 1423-1453 views

Робототехника, автоматизация и системы управления

Использование гибридной коммуникационной архитектуры подводной беспроводной сенсорной сети для повышения ее времени жизни и эффективности

Федорова Т.А., Рыжов В.А., Сафронов К.С.

Аннотация

В работе выполнен сравнительный анализ основных функциональных характеристик подводных беспроводных сенсорных сетей (ПБСС) со стационарной и гибридной коммуникационными архитектурами. Указанные ПБСС состоят из сенсорных узлов, расположенных на морском дне и надводных межсредных шлюзов, обеспечивающих передачу информационных пакетов между подводным и надводным сегментами сети. В стационарной ПБСС роль шлюзов выполняют заякоренные буи, в гибридной – мобильные транспортные платформы. С использованием математического аппарата, основанного на вероятностном подходе, проведена оценка функциональных характеристик альтернативных коммуникационных архитектур ПБСС с энергетической точки зрения - определены общие энергетические затраты сети на пересылку сообщений и время жизни сенсоров сети. Для численного анализа функциональных характеристик ПБСС рассмотрены достаточно широкие диапазоны изменения проектных параметров сети, таких как: размер акватории, требуемое количество и варианты размещения сенсорных узлов, вероятность доставки пакета в акватории (физические параметры среды), в которых осуществлялся поиск «оптимального» с энергетической точки зрения решения. Выполненное авторами исследование показывает, что мобильность играет важную роль в повышении качества функционирования подводной сети в аспектах покрытия (обеспечения связности), энергоэффективности и времени жизни. Мобильный элемент в виде волнового глайдера, выполняющий роль межсредного шлюза, способен функционировать в акватории в течение продолжительного времени, что говорит о перспективности его использования для прикладных задач сбора, накопления и ретрансляции информации в рамках интернета подводных вещей.
Информатика и автоматизация. 2024;23(5):1532-1570
pages 1532-1570 views

Синтез Fuzzy-регулятора объектом второго порядка с запаздыванием

Шилин А.А., Фам Чонг Х., Нгуен Вонг В.

Аннотация

В работе предлагается метод реализации синтеза оптимального управления динамическим объектом второго порядка с запаздыванием на базе Fuzzy-контроллера. Применена идея построения фазовой поверхности, совмещающей оптимальное релейное управление в удалении от области равновесного состояния и линейное управление в самой области. Такой подход позволяет избежать автоколебаний в установившемся режиме, при этом сохранив свойства оптимального управления по быстродействию. Траектория переключения в фазовом пространстве, соответствующая решению задачи оптимального управления согласно принципу Максимума, определяется методом обратного по времени вычисления разностного уравнения объекта второго порядка. Для определения области вокруг точки равновесного состояния, где применяется линейный регулятор, предложено использовать результаты моделирования движения точки в фазовом пространстве при оптимальном управлении для объекта с запаздыванием в режиме автоколебаний. Данная область представлена эллипсом, описывающим движение в фазовом пространстве при автоколебательном режиме. Для дальнейшего исключения автоколебаний согласно известным методам субоптимального управления в этой области применён линейный регулятор, настроенный средствами решения вариационной задачи оптимального управления. Предложено использовать инструментарий для синтеза Fuzzy- регулятора, где поверхность переключения и вычисления значения управления может задаваться произвольно. В результате получена переменная структура регулятора для совмещения этих двух подходов. Сформированная модель Fuzzy -регулятора представлена стандартной FLS-структурой, которая была реализована на языке Python во встраиваемом компьютере Orange Pi. Для подключения к действующему объекту управления использован промышленный контроллер FX3U -24MR, связанный с компьютером по сети ModBus. Приведены испытания на эксплуатируемом объекте управления температурой горячего водоснабжения, который максимально близко соответствует исследуемой модели объекта. Метод, идея и результаты, полученные в работе, можно применять и исследовать в синтезе управления динамическими объектами в скользящем режиме для решения актуальных задач, связанных с исключением нежелательного chattering-эффекта.
Информатика и автоматизация. 2024;23(5):1505-1531
pages 1505-1531 views

Скрытый смысл: декодировка роевого поведения роботов с помощью глубокого обратного обучения с подкреплением

Искандар А., Хаммуд А., Ковач Б.

Аннотация

Использование обучения с подкреплением для создания коллективного поведения роевых роботов является распространенным подходом. Тем не менее, формулирование соответствующей функции вознаграждения, которая соответствовала бы конкретным целям, остается серьезной проблемой, особенно по мере увеличения сложности задач. В этой статье мы разрабатываем модель глубокого обратного обучения с подкреплением, чтобы раскрыть структуры вознаграждения, которые помогают автономным роботам выполнять задачи посредством демонстраций. Модели глубокого обратного обучения с подкреплением особенно хорошо подходят для сложных и динамичных сред, где может быть сложно указать заранее определенные функции вознаграждения. Наша модель может генерировать различное коллективное поведение в соответствии с требуемыми целями и эффективно справляется с непрерывными пространствами состояний и действий, обеспечивая детальное восстановление структур вознаграждения. Мы протестировали модель с помощью роботов E-puck в симуляторе Webots для решения двух задач: поиска рассредоточенных коробок и навигации к заданной позиции. Получение вознаграждения зависит от демонстраций, собранных интеллектуальным предварительно обученным роем, использующим обучение с подкреплением в качестве эксперта. Результаты показывают успешное получение вознаграждения как в сегментированной, так и в непрерывной демонстрации двух типов поведения — поиска и навигации. Наблюдая за изученным поведением роя экспертом и предложенной моделью, можно заметить, что модель не просто клонирует поведение эксперта, но генерирует свои собственные стратегии для достижения целей системы.

Информатика и автоматизация. 2024;23(5):1485-1504
pages 1485-1504 views

Разработка линейной системы управления тягой винтомоторной группы для БПЛА

Воевода А.А., Филюшов Ю.П., Филюшов В.Ю.

Аннотация

Управление ориентацией и позиционированием беспилотного летательного аппарата (БПЛА) вертикального взлета и посадки мультироторного типа в пространстве неразрывно связано с формированием вектора управления движением, состоящего из комбинации тяг и аэродинамических моментов создаваемых каждой винтомоторной группой. Точность и скорость формирования вектора управления движением в значительной степени влияет на ошибки позиционирования и ориентации БПЛА. В большинстве работ, посвященных синтезу систем управления БПЛА, используется вектор управления движением без учета динамики винтомоторных групп, что в некоторых случаях вынуждает снижать быстродействие системы управления. Повысить быстродействие можно за счет повышения быстродействия формирования тяги винтомоторных групп, для чего предложена линейная система управления тягой винтомоторной группы. Винтомоторная группа в своем составе имеет нелинейную внутреннюю связь по аэродинамическому моменту и выходной сигнал – тягу, нелинейно зависящую от квадрата скорости вращения винта. Обычно, винтомоторной группой управляют как электродвигателем – внутреннюю связь по аэродинамическому моменту рассматривают как внешнее возмущение, а тягой управляют посредством изменения скорости вращения винта, которая вычисляется на основании требуемого вектора управления движением. Предлагается рассматривать тягу и аэродинамический момент как составную часть винтомоторной группы, для которой построить линейную систему управления тягой. Для этого выполнена линеаризация обратной связью системы винтомоторной группы, связывающей подаваемое на двигатели напряжение с вектором управления движением, являющимся выходной величиной. Процесс линеаризации разбит на два этапа: на первом этапе выполнена линеаризация обратной связью по состоянию для электродвигателя с внутренней нелинейной связью по аэродинамическому моменту; на втором этапе выполнена линеаризация обратной связью по выходу, полученной на первом этапе системы с нелинейным выходным сигналом – тягой. В соответствии с принципами подчиненного регулирования для линеаризованной обратной связью винтомоторной группы сформировано управление двигателем. Выполнено моделирование. Важным вопросом при применении линеаризации обратной связью является сохранение качественных характеристик системы управления при несоответствии параметров объекта и модели, параметры которой используются для вычисления линеаризующей обратной связи. В работе проведено моделирование при несоответствии некоторых параметров до 50%.
Информатика и автоматизация. 2024;23(5):1454-1484
pages 1454-1484 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».