Necessary and sufficient conditions for the stability of systems of ordinary differential equations

Cover Page

Cite item

Full Text

Abstract

In this paper, we develop an approach to the analysis of the Lyapunov stability for systems of ordinary differential equations based on stability conditions in the multiplicative form. Under additional restrictions, various versions of stability conditions are obtained based on the behavior of the right-hand side of the system.

Full Text

1 Введение

Исследование устойчивости по Ляпунову составляет актуальное направление в качественной теории дифференциальных уравнений. Хорошо известна возможность приложений этой теории в механике, физике, теории автоматического регулирования, теории сложных систем, теории управления, в радиоэлектронике и в других областях теоретических и прикладных исследований. Для технических приложений представляется важным обеспечить возможность компьютерного моделирования и компьютерного анализа устойчивости в режиме оперативного контроля за протеканием моделируемого физического процесса (см. [4]). В частности, такая задача возникает при моделировании энергетических систем большой мощности (см. [5]). Использование компьютерной техники для данного анализа целесообразно для ряда технологических, физических, механических, производственных и других процессов (см. [1, 6]).

В статье представлен подход, разрабатываемый с целью автоматизировать анализ устойчивости по Ляпунову систем обыкновенных дифференциальных уравнений (ОДУ). В основе подхода лежат условия устойчивости, полученные первоначально на основе преобразования разностных схем численного интегрирования. Далее конструируются разновидности условий в аддитивной и интегральной форме, приводится схема анализа устойчивости на основе сравнения подынтегральных функций. При выполнении дополнительных ограничений с помощью условий в интегральной форме строятся условия устойчивости на основе поведения правой части системы и ее производных.

2 Условия устойчивости систем обыкновенных дифференциальных уравнений

Рассматривается задача Коши для системы обыкновенных дифференциальных уравнений (ОДУ)

                                       V =U(t,V), V 0 =V( t 0 ),t[ t 0 ,), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbauaacaaI9aGaamyvaiaaiI cacaWG0bGaaGilaiaadAfacaaIPaGaaGilaiaaywW7caWGwbWaaSba aSqaaiaaicdaaeqaaOGaaGypaiaadAfacaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiMcacaaISaGaaGzbVlaadshacqGHiiIZcaaI BbGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqGHEisPcaaIPa GaaGilaaaa@4C56@                                             (1)

которая имеет нулевое решение. Предполагается, что существует такое δ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI+aGaaGimaaaa@34E8@ , что в области

                                   R= t 0 t<; V ˜ (t),V(t): V ˜ 0 V 0 δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaaGypamaacmaabaGaamiDam aaBaaaleaacaaIWaaabeaakiabgsMiJkaadshacaaI8aGaeyOhIuQa aG4oaiaaysW7cqGHaiIiceWGwbGbaGaacaaIOaGaamiDaiaaiMcaca aISaGaamOvaiaaiIcacaWG0bGaaGykaiaaiQdarqqr1ngBPrgifHhD YfgaiqaacqWFLicuceWGwbGbaGaadaWgaaWcbaGaaGimaaqabaGccq GHsislcaWGwbWaaSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQa eqiTdqgacaGL7bGaayzFaaaaaa@563A@

выполнены все условия существования и единственности решения системы (1). Вектор"=функция U(t,V) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaam OvaiaaiMcaaaa@368A@ определена, непрерывна в R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3298@  и удовлетворяет условию Липшица:

              U(t, V ˜ )U(t, V )L V ˜ (t)V(t) V ˜ (t),V(t)R,L=const. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGvbGaaGikaiaadshacaaISaGabmOvayaaiaGaaGykaiabgkHi TiaadwfacaaIOaGaamiDaiaaiYcacaWGwbWaaSbaaSqaaaqabaGcca aIPaGae8xjIaLaeyizImQaamitaiab=vIiqjqadAfagaacaiaaiIca caWG0bGaaGykaiabgkHiTiaadAfacaaIOaGaamiDaiaaiMcacqWFLi cucaaMf8UaeyiaIiIabmOvayaaiaGaaGikaiaadshacaaIPaGaaGil aiaadAfacaaIOaGaamiDaiaaiMcacqGHiiIZcaWGsbGaaGilaiaayw W7caWGmbGaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0bGaaGOl aaaa@64C8@

Требуется исследовать на устойчивость в смысле Ляпунова (см. [?]) решение системы (1).

2.1 Условия устойчивости в мультипликативной форме

Величина возмущения решения задачи (1) методом Эйлера в форме с остаточным членом на произвольном промежутке [ t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGyxaaaa@3725@  определяется из соотношения

                    v ˜ k(i+1) v k(i+1) = v ˜ ki v ki +h u k ( t i , V ˜ i ) u k ( t i , V i ) v ˜ ki v ki ( v ˜ ki v ki )+ w ki , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aai aaiIcacaWGPbGaey4kaSIaaGymaiaaiMcaaeqaaOGaeyOeI0IaamOD amaaBaaaleaacaWGRbGaaGikaiaadMgacqGHRaWkcaaIXaGaaGykaa qabaGccaaI9aGabmODayaaiaWaaSbaaSqaaiaadUgacaWGPbaabeaa kiabgkHiTiaadAhadaWgaaWcbaGaam4AaiaadMgaaeqaaOGaey4kaS IaamiAamaalaaabaGaamyDamaaBaaaleaacaWGRbaabeaakiaaiIca caWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiqadAfagaacamaaBa aaleaacaWGPbaabeaakiaaiMcacqGHsislcaWG1bWaaSbaaSqaaiaa dUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaISa GaamOvamaaBaaaleaacaWGPbaabeaakiaaiMcaaeaaceWG2bGbaGaa daWgaaWcbaGaam4AaiaadMgaaeqaaOGaeyOeI0IaamODamaaBaaale aacaWGRbGaamyAaaqabaaaaOGaaGikaiqadAhagaacamaaBaaaleaa caWGRbGaamyAaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaadUgaca WGPbaabeaakiaaiMcacqGHRaWkcaWG3bWaaSbaaSqaaiaadUgacaWG PbaabeaakiaaiYcaaaa@6E8A@

или

                            v ˜ k(i+1) v k(i+1) =(1+h D i (k) )( v ˜ ki v ki )+ w ki ,k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aai aaiIcacaWGPbGaey4kaSIaaGymaiaaiMcaaeqaaOGaeyOeI0IaamOD amaaBaaaleaacaWGRbGaaGikaiaadMgacqGHRaWkcaaIXaGaaGykaa qabaGccaaI9aGaaGikaiaaigdacqGHRaWkcaWGObGaamiramaaDaaa leaacaWGPbaabaGaaGikaiaadUgacaaIPaaaaOGaaGykaiaaiIcace WG2bGbaGaadaWgaaWcbaGaam4AaiaadMgaaeqaaOGaeyOeI0IaamOD amaaBaaaleaacaWGRbGaamyAaaqabaGccaaIPaGaey4kaSIaam4Dam aaBaaaleaacaWGRbGaamyAaaqabaGccaaISaGaaGzbVlaadUgacqGH iiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaacaaISaaaaa@5C2C@                                   (2)

 где

                  D i (k) = u k ( t i , V ˜ i ) u k ( t i , V i ) v ˜ ki v ki ,t= t i+1 ,h= t i+1 t 0 i+1 ,i=0,1,. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaa0baaSqaaiaadMgaaeaaca aIOaGaam4AaiaaiMcaaaGccaaI9aWaaSaaaeaacaWG1bWaaSbaaSqa aiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGcca aISaGabmOvayaaiaWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHi TiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaale aacaWGPbaabeaakiaaiYcacaWGwbWaaSbaaSqaaiaadMgaaeqaaOGa aGykaaqaaiqadAhagaacamaaBaaaleaacaWGRbGaamyAaaqabaGccq GHsislcaWG2bWaaSbaaSqaaiaadUgacaWGPbaabeaaaaGccaaISaGa aGzbVlaadshacaaI9aGaamiDamaaBaaaleaacaWGPbGaey4kaSIaaG ymaaqabaGccaaISaGaaGzbVlaadIgacaaI9aWaaSaaaeaacaWG0bWa aSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadshada WgaaWcbaGaaGimaaqabaaakeaacaWGPbGaey4kaSIaaGymaaaacaaI SaGaaGzbVlaadMgacaaI9aGaaGimaiaaiYcacaaIXaGaaGilaiablA ciljaai6caaaa@6D34@

Рекуррентное преобразование (2) влечет выражение для возмущения на текущем шаге через возмущение начальных данных:

                        v ˜ k(i+1) v k(i+1) = l=0 i (1+h D il (k) )( v ˜ k0 v k0 )+ R i (k) ,k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aai aaiIcacaWGPbGaey4kaSIaaGymaiaaiMcaaeqaaOGaeyOeI0IaamOD amaaBaaaleaacaWGRbGaaGikaiaadMgacqGHRaWkcaaIXaGaaGykaa qabaGccaaI9aWaaebCaeqaleaacqWItecBcaaI9aGaaGimaaqaaiaa dMgaa0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIaamiAaiaadseada qhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaGyk aaaakiaaiMcacaaIOaGabmODayaaiaWaaSbaaSqaaiaadUgacaaIWa aabeaakiabgkHiTiaadAhadaWgaaWcbaGaam4AaiaaicdaaeqaaOGa aGykaiabgUcaRiaadkfadaqhaaWcbaGaamyAaaqaaiaaiIcacaWGRb GaaGykaaaakiaaiYcacaaMf8Uaam4AaiabgIGiopaanaaabaGaaGym aiaaiYcacaWGUbaaaiaaiYcaaaa@64FF@

                                        R i (k) = r=0 i1 l=0 r (1+h D il (k) ) w k(ir1) + w ki . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaa0baaSqaaiaadMgaaeaaca aIOaGaam4AaiaaiMcaaaGccaaI9aWaaabCaeqaleaacaWGYbGaaGyp aiaaicdaaeaacaWGPbGaeyOeI0IaaGymaaqdcqGHris5aOWaaebCae qaleaacqWItecBcaaI9aGaaGimaaqaaiaadkhaa0Gaey4dIunakiaa iIcacaaIXaGaey4kaSIaamiAaiaadseadaqhaaWcbaGaamyAaiabgk HiTiabloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaaiMcacaWG3bWa aSbaaSqaaiaadUgacaaIOaGaamyAaiabgkHiTiaadkhacqGHsislca aIXaGaaGykaaqabaGccqGHRaWkcaWG3bWaaSbaaSqaaiaadUgacaWG Pbaabeaakiaai6caaaa@5B14@

 В рассматриваемых условиях

                                         lim i R i (k) =0t[ t 0 ,),k 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadMgacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaamOuamaaDaaaleaa caWGPbaabaGaaGikaiaadUgacaaIPaaaaOGaaGypaiaaicdacaaMf8 UaeyiaIiIaamiDaiabgIGiolaaiUfacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGilaiabg6HiLkaaiMcacaaISaGaeyiaIiIaam4AaiabgI GiopaanaaabaGaaGymaiaaiYcacaWGUbaaaaaa@5025@

(см. [7, 8]). Отсюда следует

             v ˜ k (t) v k (t)= lim i l=0 i (1+h D il (k) )( v ˜ k ( t 0 ) v k ( t 0 ))t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDaiaaiMcacqGHsislcaWG2bWaaSbaaSqaaiaa dUgaaeqaaOGaaGikaiaadshacaaIPaGaaGypamaawafabeWcbaGaam yAaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaqe WbqabSqaaiabloriSjaai2dacaaIWaaabaGaamyAaaqdcqGHpis1aO GaaGikaiaaigdacqGHRaWkcaWGObGaamiramaaDaaaleaacaWGPbGa eyOeI0IaeS4eHWgabaGaaGikaiaadUgacaaIPaaaaOGaaGykaiaaiI caceWG2bGbaGaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaa BaaaleaacaaIWaaabeaakiaaiMcacqGHsislcaWG2bWaaSbaaSqaai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI PaGaaGykaiaaywW7cqGHaiIicaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaiaaiYcacaaM e8UaeyiaIiIaam4AaiabgIGiopaanaaabaGaaGymaiaaiYcacaWGUb aaaiaai6caaaa@74C4@                    (3)

 

Из соотношения (3) следует, что величина возмущения равна бесконечному произведению, умноженному на возмущение начальных данных. Следовательно, для устойчивости решения системы (1) необходимо и достаточно существование такого Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba aaaa@340E@ , 0< Δ 1 δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabfs5aenaaBaaale aacaaIXaaabeaakiabgsMiJkabes7aKbaa@38F2@ , что для любой функции V ˜ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaGaacaaIOaGaamiDaiaaiM caaaa@3509@ , удовлетворяющей условию V ˜ ( t 0 )= V ˜ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaGaacaaIOaGaamiDamaaBa aaleaacaaIWaaabeaakiaaiMcacaaI9aGabmOvayaaiaWaaSbaaSqa aiaaicdaaeqaaaaa@3890@ , где V ˜ 0 V 0 Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cuceWGwbGbaGaadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGwbWa aSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQaeuiLdq0aaSbaaS qaaiaaigdaaeqaaaaa@4128@ , выполняется неравенство

                     lim i l=0 i (1+h D il (k) ) c 1 , c 1 =const,t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaawafabeWcbaGaamyAai abgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaqeWbqa bSqaaiabloriSjaai2dacaaIWaaabaGaamyAaaqdcqGHpis1aOGaaG ikaiaaigdacqGHRaWkcaWGObGaamiramaaDaaaleaacaWGPbGaeyOe I0IaeS4eHWgabaGaaGikaiaadUgacaaIPaaaaOGaaGykaaGaay5bSl aawIa7aiabgsMiJkaadogadaWgaaWcbaGaaGymaaqabaGccaaISaGa aGzbVlaadogadaWgaaWcbaGaaGymaaqabaGccaaI9aGaam4yaiaad+ gacaWGUbGaam4CaiaadshacaaISaGaaGzbVlabgcGiIiaadshacqGH iiIZcaaIBbGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqGHEi sPcaaIPaGaaGilaiaaysW7cqGHaiIicaWGRbGaeyicI48aa0aaaeaa caaIXaGaaGilaiaad6gaaaGaaGOlaaaa@6DCE@                            (4)

Для асимптотической устойчивости решения системы (1) необходимо и достаточно, чтобы решение было устойчиво и существовало такое Δ 2 Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGOmaaqaba GccqGHKjYOcqqHuoardaWgaaWcbaGaaGymaaqabaaaaa@381B@ , что условие V ˜ 0 V 0 Δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cuceWGwbGbaGaadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGwbWa aSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQaeuiLdq0aaSbaaS qaaiaaikdaaeqaaaaa@4129@  влечет

                                       lim t lim i l=0 i (1+h D il (k) ) =0k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaqWaaeaadaGfqbqa bSqaaiaadMgacqGHsgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2 gaaaWaaebCaeqaleaacqWItecBcaaI9aGaaGimaaqaaiaadMgaa0Ga ey4dIunakiaaiIcacaaIXaGaey4kaSIaamiAaiaadseadaqhaaWcba GaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaa iMcaaiaawEa7caGLiWoacaaI9aGaaGimaiaaywW7cqGHaiIicaWGRb GaeyicI48aa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGOlaaaa@5DDA@                                              (5)

Практическая значимость условий (4), (5) заключается в возможности выполнять анализ устойчивости нелинейной системы ОДУ без представления решения в аналитической форме, непосредственно по значениям разностных приближений. Мультипликативная форма выражений под знаком предела позволяет выполнить программную реализацию условий (4), (5) и осуществить компьютерный анализ устойчивости систем нелинейных ОДУ. Предложенный подход можно использовать для анализа устойчивости систем линейных ОДУ с переменной и постоянной матрицей коэффициентов, систем линейных ОДУ с нелинейной добавкой (см. [2]). При компьютерном анализе устойчивости систем линейных ОДУ на основе предложенного подхода не требуется находить приближенное решение системы, достаточно на вход программы подать матрицу из правой части системы.

Соотношение (3) эквивалентно

                       v ˜ k (t) v k (t) v ˜ k ( t 0 ) v k ( t 0 ) = lim i l=0 i (1+h D il (k) )t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiqadAhagaacamaaBaaale aacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiabgkHiTiaadAhadaWg aaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiMcaaeaaceWG2bGbaG aadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiMcacqGHsislcaWG2bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaiaai2da daGfqbqabSqaaiaadMgacqGHsgIRcqGHEisPaeqakeaaciGGSbGaai yAaiaac2gaaaWaaebCaeqaleaacqWItecBcaaI9aGaaGimaaqaaiaa dMgaa0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIaamiAaiaadseada qhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaGyk aaaakiaaiMcacaaMf8UaeyiaIiIaamiDaiabgIGiolaaiUfacaWG0b WaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6HiLkaaiMcacaaISaGa aGjbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaam OBaaaacaaIUaaaaa@736F@

Следовательно, имеют место следующие разновидности условий устойчивости и асимптотической устойчивости решения системы (1):

                        v ˜ k (t) v k (t) v ˜ k ( t 0 ) v k ( t 0 ) c 1 , c 1 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaalaaabaGabmODayaaia WaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0Ia amODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaaqaai qadAhagaacamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGykaiabgkHiTiaadAhadaWgaaWcbaGaam 4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMca aaaacaGLhWUaayjcSdGaeyizImQaam4yamaaBaaaleaacaaIXaaabe aakiaaiYcacaaMf8Uaam4yamaaBaaaleaacaaIXaaabeaakiaai2da caWGJbGaam4Baiaad6gacaWGZbGaamiDaiaaiYcacaaMf8UaeyiaIi IaamiDaiabgIGiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aGilaiabg6HiLkaaiMcacaaISaGaaGjbVlabgcGiIiaadUgacqGHii IZdaqdaaqaaiaaigdacaaISaGaamOBaaaacaaISaaaaa@6BE4@

                                          lim t v ˜ k (t) v k (t) v ˜ k ( t 0 ) v k ( t 0 ) =0k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaqWaaeaadaWcaaqa aiqadAhagaacamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaG ykaiabgkHiTiaadAhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiD aiaaiMcaaeaaceWG2bGbaGaadaWgaaWcbaGaam4AaaqabaGccaaIOa GaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHsislcaWG2bWa aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaa qabaGccaaIPaaaaaGaay5bSlaawIa7aiaai2dacaaIWaGaaGzbVlab gcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaaca aIUaaaaa@5BF2@

Для анализа устойчивости на основе полученных условий целесообразно вычисление возмущенного и невозмущенного решения с более высокой точностью, чем на основе разностных методов (см. [7]). С этой целью используется метод варьируемого кусочно"=полиномиального приближения решения задачи Коши для ОДУ (см. [3]). При этом в качестве приближающего полинома используется полином Лагранжа, преобразованный описанным ниже способом (см. [13]).

В формуле полинома Лагранжа

                                    Ψ n 0 (t)= j=0 n 0 f( t j ) r=0 rj n 0 (t t r )/ r=0 rj n 0 ( t j t r ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaamOBamaaBa aabaGaaGimaaqabaaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaae WbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gadaWgaaqaaiaaic daaeqaaaqdcqGHris5aOGaamOzaiaaiIcacaWG0bWaaSbaaSqaaiaa dQgaaeqaaOGaaGykamaadmaabaWaaebCaeqaleaaeaGabeaacaWGYb GaaGypaiaaicdaaeaacaWGYbGaeyiyIKRaamOAaaaaaeaacaWGUbWa aSbaaeaacaaIWaaabeaaa0Gaey4dIunakiaaiIcacaWG0bGaeyOeI0 IaamiDamaaBaaaleaacaWGYbaabeaakiaaiMcacaaIVaWaaebCaeqa leaaeaGabeaacaWGYbGaaGypaiaaicdaaeaacaWGYbGaeyiyIKRaam OAaaaaaeaacaWGUbWaaSbaaeaacaaIWaaabeaaa0Gaey4dIunakiaa iIcacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamiDamaaBa aaleaacaWGYbaabeaakiaaiMcaaiaawUfacaGLDbaaaaa@6694@

выполним следующие преобразования. Пусть (t t 0 )/h=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiabgkHiTiaadshada WgaaWcbaGaaGimaaqabaGccaaIPaGaaG4laiaadIgacaaI9aGaamiE aaaa@3A5F@ , t j = t 0 +jh MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaadshadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGQbGa amiAaaaa@394D@ ; тогда

                            r=0 rj n 0 (t t r )= r=0 rj n 0 (xr)h, r=0 rj n 0 ( t j t r )= r=0 rj n 0 (jr)h. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqeWbqabSqaaqaaceqaaiaadkhaca aI9aGaaGimaaqaaiaadkhacqGHGjsUcaWGQbaaaaqaaiaad6gadaWg aaqaaiaaicdaaeqaaaqdcqGHpis1aOGaaGikaiaadshacqGHsislca WG0bWaaSbaaSqaaiaadkhaaeqaaOGaaGykaiaai2dadaqeWbqabSqa aqaaceqaaiaadkhacaaI9aGaaGimaaqaaiaadkhacqGHGjsUcaWGQb aaaaqaaiaad6gadaWgaaqaaiaaicdaaeqaaaqdcqGHpis1aOGaaGik aiaadIhacqGHsislcaWGYbGaaGykaiaadIgacaaISaGaaGzbVpaara habeWcbaabaiqabaGaamOCaiaai2dacaaIWaaabaGaamOCaiabgcMi 5kaadQgaaaaabaGaamOBamaaBaaabaGaaGimaaqabaaaniabg+Givd GccaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiabgkHiTiaadsha daWgaaWcbaGaamOCaaqabaGccaaIPaGaaGypamaarahabeWcbaabai qabaGaamOCaiaai2dacaaIWaaabaGaamOCaiabgcMi5kaadQgaaaaa baGaamOBamaaBaaabaGaaGimaaqabaaaniabg+GivdGccaaIOaGaam OAaiabgkHiTiaadkhacaaIPaGaamiAaiaai6caaaa@758A@

В результате

                                                Ψ n 0 (t)= j=0 n 0 f( t j ) P n 0 j (x) G n 0 j (j) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaamOBamaaBa aabaGaaGimaaqabaaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaae WbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gadaWgaaqaaiaaic daaeqaaaqdcqGHris5aOGaamOzaiaaiIcacaWG0bWaaSbaaSqaaiaa dQgaaeqaaOGaaGykaiaaysW7daWcaaqaaiaadcfadaWgaaWcbaGaam OBamaaBaaabaGaaGimaaqabaGaamOAaaqabaGccaaIOaGaamiEaiaa iMcaaeaacaWGhbWaaSbaaSqaaiaad6gadaWgaaqaaiaaicdaaeqaai aadQgaaeqaaOGaaGikaiaadQgacaaIPaaaaiaaiYcaaaa@5202@

где

                P n 0 j (x)= r=0 n 0 1 (x x r ), G n 0 j (j)= r=0 n 0 1 (j x r ), x r = r, r<j; r+1, rj. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaad6gadaWgaa qaaiaaicdaaeqaaiaadQgaaeqaaOGaaGikaiaadIhacaaIPaGaaGyp amaarahabeWcbaGaamOCaiaai2dacaaIWaaabaGaamOBamaaBaaaba GaaGimaaqabaGaeyOeI0IaaGymaaqdcqGHpis1aOGaaGikaiaadIha cqGHsislcaWG4bWaaSbaaSqaaiaadkhaaeqaaOGaaGykaiaaiYcaca aMf8Uaam4ramaaBaaaleaacaWGUbWaaSbaaeaacaaIWaaabeaacaWG QbaabeaakiaaiIcacaWGQbGaaGykaiaai2dadaqeWbqabSqaaiaadk hacaaI9aGaaGimaaqaaiaad6gadaWgaaqaaiaaicdaaeqaaiabgkHi Tiaaigdaa0Gaey4dIunakiaaiIcacaWGQbGaeyOeI0IaamiEamaaBa aaleaacaWGYbaabeaakiaaiMcacaaISaGaaGzbVlaadIhadaWgaaWc baGaamOCaaqabaGccaaI9aWaaiqaaeaafaqabeGacaaabaGaamOCai aaiYcaaeaacaWGYbGaaGipaiaadQgacaaI7aaabaGaamOCaiabgUca RiaaigdacaaISaaabaGaamOCaiabgwMiZkaadQgacaaIUaaaaaGaay 5Eaaaaaa@7033@

Переменную P n 0 j (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaad6gadaWgaa qaaiaaicdaaeqaaiaadQgaaeqaaOGaaGikaiaadIhacaaIPaaaaa@37EB@  можно представить в виде полинома

                                    P n 0 j (x)= d 0j + d 1j x+ d 2j x 2 ++ d n 0 j x n 0 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaad6gadaWgaa qaaiaaicdaaeqaaiaadQgaaeqaaOGaaGikaiaadIhacaaIPaGaaGyp aiaadsgadaWgaaWcbaGaaGimaiaadQgaaeqaaOGaey4kaSIaamizam aaBaaaleaacaaIXaGaamOAaaqabaGccaWG4bGaey4kaSIaamizamaa BaaaleaacaaIYaGaamOAaaqabaGccaWG4bWaaWbaaSqabeaacaaIYa aaaOGaey4kaSIaeSOjGSKaey4kaSIaamizamaaBaaaleaacaWGUbWa aSbaaeaacaaIWaaabeaacaWGQbaabeaakiaadIhadaahaaWcbeqaai aad6gadaWgaaqaaiaaicdaaeqaaaaakiaaiUdaaaa@5047@

аналогично, G n 0 j (j) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gadaWgaa qaaiaaicdaaeqaaiaadQgaaeqaaOGaaGikaiaadQgacaaIPaaaaa@37D4@  преобразуется к виду

      G n 0 j (j)= d 0j + d 1j j+ d 2j j 2 ++ d n 0 j j n 0 или G n 0 j (j)=( 1) n 0 j j!( n 0 j)!. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gadaWgaa qaaiaaicdaaeqaaiaadQgaaeqaaOGaaGikaiaadQgacaaIPaGaaGyp aiaadsgadaWgaaWcbaGaaGimaiaadQgaaeqaaOGaey4kaSIaamizam aaBaaaleaacaaIXaGaamOAaaqabaGccaWGQbGaey4kaSIaamizamaa BaaaleaacaaIYaGaamOAaaqabaGccaWGQbWaaWbaaSqabeaacaaIYa aaaOGaey4kaSIaeSOjGSKaey4kaSIaamizamaaBaaaleaacaWGUbWa aSbaaeaacaaIWaaabeaacaWGQbaabeaakiaadQgadaahaaWcbeqaai aad6gadaWgaaqaaiaaicdaaeqaaaaakiaaywW7caqG4qGaae4oeiaa bIdbcaaMf8Uaam4ramaaBaaaleaacaWGUbWaaSbaaeaacaaIWaaabe aacaWGQbaabeaakiaaiIcacaWGQbGaaGykaiaai2dacaaIOaGaeyOe I0IaaGymaiaaiMcadaahaaWcbeqaaiaad6gadaWgaaqaaiaaicdaae qaaiabgkHiTiaadQgaaaGccaaMi8UaamOAaiaaigcacaaMi8UaaGik aiaad6gadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGQbGaaGykai aaigcacaaIUaaaaa@6DA8@

Таким образом,

                             Ψ n 0 (t)= j=0 n 0 f( t j ) d 0j + d 1j x+ d 2j x 2 ++ d n 0 j x n 0 d 0j + d 1j j+ d 2j j 2 ++ d n 0 j j n 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaamOBamaaBa aabaGaaGimaaqabaaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaae WbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gadaWgaaqaaiaaic daaeqaaaqdcqGHris5aOGaamOzaiaaiIcacaWG0bWaaSbaaSqaaiaa dQgaaeqaaOGaaGykaiaayIW7daWcaaqaaiaadsgadaWgaaWcbaGaaG imaiaadQgaaeqaaOGaey4kaSIaamizamaaBaaaleaacaaIXaGaamOA aaqabaGccaWG4bGaey4kaSIaamizamaaBaaaleaacaaIYaGaamOAaa qabaGccaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeSOjGSKa ey4kaSIaamizamaaBaaaleaacaWGUbWaaSbaaeaacaaIWaaabeaaca WGQbaabeaakiaadIhadaahaaWcbeqaaiaad6gadaWgaaqaaiaaicda aeqaaaaaaOqaaiaadsgadaWgaaWcbaGaaGimaiaadQgaaeqaaOGaey 4kaSIaamizamaaBaaaleaacaaIXaGaamOAaaqabaGccaWGQbGaey4k aSIaamizamaaBaaaleaacaaIYaGaamOAaaqabaGccaWGQbWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIaeSOjGSKaey4kaSIaamizamaaBaaa leaacaWGUbWaaSbaaeaacaaIWaaabeaacaWGQbaabeaakiaadQgada ahaaWcbeqaaiaad6gadaWgaaqaaiaaicdaaeqaaaaaaaGccaaIUaaa aa@7341@                                    (6)

Из соотношения (6) следует, что полином Лагранжа всегда можно представить в виде

                          Ψ n 0 (t)= l=0 n 0 a l x l ,где a l = j=0 n 0 f( t j ) d lj G n 0 j (j) ,x= t t 0 h . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaamOBamaaBa aabaGaaGimaaqabaaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaae WbqabSqaaiabloriSjaai2dacaaIWaaabaGaamOBamaaBaaabaGaaG imaaqabaaaniabggHiLdGccaWGHbWaaSbaaSqaaiabloriSbqabaGc caWG4bWaaWbaaSqabeaacqWItecBaaGccaaISaGaaGzbVlaabodbca qG0qGaaeyneiaaywW7caWGHbWaaSbaaSqaaiabloriSbqabaGccaaI 9aWaaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUbWaaSbaae aacaaIWaaabeaaa0GaeyyeIuoakmaalaaabaGaamOzaiaaiIcacaWG 0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaadsgadaWgaaWcbaGaeS 4eHWMaamOAaaqabaaakeaacaWGhbWaaSbaaSqaaiaad6gadaWgaaqa aiaaicdaaeqaaiaadQgaaeqaaOGaaGikaiaadQgacaaIPaaaaiaaiY cacaaMf8UaamiEaiaai2dadaWcaaqaaiaadshacqGHsislcaWG0bWa aSbaaSqaaiaaicdaaeqaaaGcbaGaamiAaaaacaaIUaaaaa@6AF6@

Приближение решения и правой части (1) на [a,b]= i=0 R1 [ a i , b i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyyaiaaiYcacaWGIbGaaG yxaiaai2dadaWeWbqabSqaaiaadMgacaaI9aGaaGimaaqaaiaadkfa cqGHsislcaaIXaaaniablQIivbGccaaIBbGaamyyamaaBaaaleaaca WGPbaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaGyx aaaa@443A@  сводится к последовательному приближению на подынтервалах

                                [ a i , b i ]= j=0 P1 [ t j , t j+1 ],P =2 k 0 , k 0 ={0,1,}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyyamaaBaaaleaacaWGPb aabeaakiaaiYcacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaGyxaiaa i2dadaWeWbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaadcfacqGHsi slcaaIXaaaniablQIivbGccaaIBbGaamiDamaaBaaaleaacaWGQbaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaadQgacqGHRaWkcaaIXaaabe aakiaai2facaaISaGaaGzbVlaadcfacaaI9aGaaGOmamaaCaaaleqa baGaam4AamaaBaaabaGaaGimaaqabaaaaOGaaGilaiaaywW7caWGRb WaaSbaaSqaaiaaicdaaeqaaOGaaGypaiaaiUhacaaIWaGaaGilaiaa igdacaaISaGaeSOjGSKaaGyFaiaai6caaaa@5A95@                                       (7)

При каждом i1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaeyyzImRaaGymaaaa@3530@  полагаем v ˜ k ( a i )= v ˜ k1 ( b i1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamyyamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI 9aGabmODayaaiaWaaSbaaSqaaiaadUgacqGHsislcaaIXaaabeaaki aaiIcacaWGIbWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaa iMcaaaa@4117@ , v ˜ k ( a 0 )= v ˜ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamyyamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI 9aGabmODayaaiaWaaSbaaSqaaiaaicdaaeqaaaaa@39E3@  и на каждом подынтервале из (7) строим кусочно полиномиальное приближение функции правой части (1). Количество подынтервалов P =2 k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGypaiaaikdadaahaaWcbe qaaiaadUgadaWgaaqaaiaaicdaaeqaaaaaaaa@3611@  и степень интерполяционного полинома n 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaa aa@339A@  выбираются так, чтобы было минимальным значение

       δ kij (t)=| ψ kj n 0 (t) u k (t, z 1j (t),, z nj (t))|,t[ t j , t j+1 ],j= 0,P1 ¯ ,k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaam4AaiaadM gacaWGQbaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaaI8bGaeqiY dK3aaSbaaSqaaiaadUgacaWGQbGaamOBamaaBaaabaGaaGimaaqaba aabeaakiaaiIcacaWG0bGaaGykaiabgkHiTiaadwhadaWgaaWcbaGa am4AaaqabaGccaaIOaGaamiDaiaaiYcacaWG6bWaaSbaaSqaaiaaig dacaWGQbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaI SaGaamOEamaaBaaaleaacaWGUbGaamOAaaqabaGccaaIOaGaamiDai aaiMcacaaIPaGaaGiFaiaaiYcacaaMf8UaamiDaiabgIGiolaaiUfa caWG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGilaiaadshadaWgaaWcba GaamOAaiabgUcaRiaaigdaaeqaaOGaaGyxaiaaiYcacaaMf8UaamOA aiaai2dadaqdaaqaaiaaicdacaaISaGaamiuaiabgkHiTiaaigdaaa GaaGilaiaaywW7caWGRbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaa d6gaaaGaaGilaaaa@7401@

где ψ kj n 0 (t) u k (t, v ˜ 1 ,, v ˜ n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaam4AaiaadQ gacaWGUbWaaSbaaeaacaaIWaaabeaaaeqaaOGaaGikaiaadshacaaI PaGaeyisISRaamyDamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0b GaaGilaiqadAhagaacamaaBaaaleaacaaIXaaabeaakiaaiYcacqWI MaYscaaISaGabmODayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGykaa aa@4771@ ,

                                                 z kj (t)= v ˜ kj + t j t ψ kj n 0 (t)dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadUgacaWGQb aabeaakiaaiIcacaWG0bGaaGykaiaai2daceWG2bGbaGaadaWgaaWc baGaam4AaiaadQgaaeqaaOGaey4kaSYaa8qmaeqaleaacaWG0bWaaS baaeaacaWGQbaabeaaaeaacaWG0baaniabgUIiYdGccqaHipqEdaWg aaWcbaGaam4AaiaadQgacaWGUbWaaSbaaeaacaaIWaaabeaaaeqaaO GaaGikaiaadshacaaIPaGaamizaiaadshaaaa@4B22@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  полином с числовыми коэффициентами, приближающий искомое решение. При этом значения в узлах интерполяции на каждом подынтервале априори вычисляются по методу Эйлера с излагаемыми ниже особенностями.

При каждом j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  подынтервал [ t j , t j+1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaWGQb aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaadQgacqGHRaWkcaaIXaaa beaakiaai2faaaa@3A1C@  из (7) разобьем на n 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaa aa@339A@  равноотстоящих узлов с шагом h 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaicdaaeqaaa aa@3394@ :

                                    t jp = t j +p h 0 ,p= 0,n ¯ 0 , h 0 = t j+1 t j n 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgacaWGWb aabeaakiaai2dacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIa amiCaiaadIgadaWgaaWcbaGaaGimaaqabaGccaaISaGaaGzbVlaadc hacaaI9aWaa0aaaeaacaaIWaGaaGilaiaad6gaaaWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaaywW7caWGObWaaSbaaSqaaiaaicdaaeqaaO GaaGypamaalaaabaGaamiDamaaBaaaleaacaWGQbGaey4kaSIaaGym aaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaam OBamaaBaaaleaacaaIWaaabeaaaaGccaaIUaaaaa@512A@                                           (8)

В каждом из узлов (8) вычислим значения u k ( t jp , v ¯ 1jp ,, v ¯ njp ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaamOAaiaadchaaeqaaOGaaGilaiqa dAhagaqeamaaBaaaleaacaaIXaGaamOAaiaadchaaeqaaOGaaGilai ablAciljaaiYcaceWG2bGbaebadaWgaaWcbaGaamOBaiaadQgacaWG WbaabeaakiaaiMcaaaa@43A5@ , где v ¯ kjp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaam4Aai aadQgacaWGWbaabeaaaaa@35D4@  определяется по методу Эйлера:

               v ¯ kjp = v ¯ kj(p1) + h 0 u k ( t j(p1) , v ¯ 1j(p1) ,, v ¯ nj(p1) ),p= 0,n ¯ 0 ,k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaam4Aai aadQgacaWGWbaabeaakiaai2daceWG2bGbaebadaWgaaWcbaGaam4A aiaadQgacaaIOaGaamiCaiabgkHiTiaaigdacaaIPaaabeaakiabgU caRiaadIgadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWG1bWaaSba aSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaiaaiI cacaWGWbGaeyOeI0IaaGymaiaaiMcaaeqaaOGaaGilaiqadAhagaqe amaaBaaaleaacaaIXaGaamOAaiaaiIcacaWGWbGaeyOeI0IaaGymai aaiMcaaeqaaOGaaGilaiablAciljaaiYcaceWG2bGbaebadaWgaaWc baGaamOBaiaadQgacaaIOaGaamiCaiabgkHiTiaaigdacaaIPaaabe aakiaaiMcacaaISaGaaGzbVlaadchacaaI9aWaa0aaaeaacaaIWaGa aGilaiaad6gaaaWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaaywW7ca WGRbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGOlaaaa @6D2C@                      (9)

При этом в качестве v ¯ j0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaamOAai aaicdaaeqaaaaa@34A9@  берется значение на границе справа из окончательного приближения на предыдущем подынтервале: v ¯ kj0 = v ¯ k(j1)n 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaam4Aai aadQgacaaIWaaabeaakiaai2daceWG2bGbaebadaWgaaWcbaGaam4A aiaaiIcacaWGQbGaeyOeI0IaaGymaiaaiMcacaWGUbaabeaakmaaBa aaleaacaaIWaaabeaaaaa@3E78@ , для начального подынтервала из (7) v ¯ k00 = v ˜ k0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaam4Aai aaicdacaaIWaaabeaakiaai2daceWG2bGbaGaadaWgaaWcbaGaam4A aiaaicdaaeqaaaaa@3915@ . При этом значения в (9) можно получить и на основе разностных методов высокого порядка. Значения u k ( t jp , v ¯ 1jp ,, v ¯ njp ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaamOAaiaadchaaeqaaOGaaGilaiqa dAhagaqeamaaBaaaleaacaaIXaGaamOAaiaadchaaeqaaOGaaGilai ablAciljaaiYcaceWG2bGbaebadaWgaaWcbaGaamOBaiaadQgacaWG WbaabeaakiaaiMcaaaa@43A5@  принимаются за значения в узлах интерполяции:

                               φ kjp = u k ( t jp , v ¯ 1jp ,, v ¯ njp ),p= 0,n ¯ 0 ,k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaam4AaiaadQ gacaWGWbaabeaakiaai2dacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGa aGikaiaadshadaWgaaWcbaGaamOAaiaadchaaeqaaOGaaGilaiqadA hagaqeamaaBaaaleaacaaIXaGaamOAaiaadchaaeqaaOGaaGilaiab lAciljaaiYcaceWG2bGbaebadaWgaaWcbaGaamOBaiaadQgacaWGWb aabeaakiaaiMcacaaISaGaaGzbVlaadchacaaI9aWaa0aaaeaacaaI WaGaaGilaiaad6gaaaWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaayw W7caWGRbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGOl aaaa@587C@                                    (10)

Аналогично, всюду ниже через v ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebaaaa@32D4@  будем обозначать вычисляемое приближение точного решения v ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaaaaa@32CB@ . По условиям интерполяции (10) строим полином Лагранжа степени n 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaa aa@339A@ , который приводится к виду

                                 ψ kj n 0 (t)= l=0 n 0 a kjl t t j0 h 0 l , a kjl = p=0 n 0 φ kjp d lp G n 0 p . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaam4AaiaadQ gacaWGUbWaaSbaaeaacaaIWaaabeaaaeqaaOGaaGikaiaadshacaaI PaGaaGypamaaqahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGUb WaaSbaaeaacaaIWaaabeaaa0GaeyyeIuoakiaadggadaWgaaWcbaGa am4AaiaadQgacqWItecBaeqaaOWaaeWaaeaadaWcaaqaaiaadshacq GHsislcaWG0bWaaSbaaSqaaiaadQgacaaIWaaabeaaaOqaaiaadIga daWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacqWItecBaaGccaaISaGaaGzbVlaadggadaWgaaWcbaGaam4Aaiaa dQgacqWItecBaeqaaOGaaGypamaaqahabeWcbaGaamiCaiaai2daca aIWaaabaGaamOBamaaBaaabaGaaGimaaqabaaaniabggHiLdGcdaWc aaqaaiabeA8aQnaaBaaaleaacaWGRbGaamOAaiaadchaaeqaaOGaam izamaaBaaaleaacqWItecBcaWGWbaabeaaaOqaaiaadEeadaWgaaWc baGaamOBamaaBaaabaGaaGimaaqabaGaamiCaaqabaaaaOGaaGOlaa aa@698D@                                     (11)

Полином (11) приближает производную решения задачи (1). Приближение самого решения строится как первообразная от (11) с постоянной, принимающей значение v ¯ k j0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaam4Aaa qabaGcdaWgaaWcbaGaamOAaiaaicdaaeqaaaaa@35CF@ . Семейство первообразных от полинома ψ kj n 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaam4AaiaadQ gacaWGUbWaaSbaaeaacaaIWaaabeaaaeqaaOGaaGikaiaadshacaaI Paaaaa@39D0@  на j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  -м подынтервале имеет вид

                                           ψ kj n 0 (x)dx=C+h l=0 n 0 a kjl l+1 x l+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdbaqabSqabeqaniabgUIiYdGccq aHipqEdaWgaaWcbaGaam4AaiaadQgacaWGUbWaaSbaaeaacaaIWaaa beaaaeqaaOGaaGikaiaadIhacaaIPaGaamizaiaadIhacaaI9aGaam 4qaiabgUcaRiaadIgadaaeWbqabSqaaiabloriSjaai2dacaaIWaaa baGaamOBamaaBaaabaGaaGimaaqabaaaniabggHiLdGcdaWcaaqaai aadggadaWgaaWcbaGaam4AaiaadQgacqWItecBaeqaaaGcbaGaeS4e HWMaey4kaSIaaGymaaaacaWG4bWaaWbaaSqabeaacqWItecBcqGHRa WkcaaIXaaaaOGaaGOlaaaa@53AF@

Фиксация значения нижнего предела в правой части и замена константы C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbaaaa@3289@  на v ¯ k j0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaam4Aaa qabaGcdaWgaaWcbaGaamOAaiaaicdaaeqaaaaa@35CF@  определяет функцию

                                                z kj (t)= v ¯ k j0 + t j0 t ψ kj n 0 (t)dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadUgacaWGQb aabeaakiaaiIcacaWG0bGaaGykaiaai2daceWG2bGbaebadaWgaaWc baGaam4AaaqabaGcdaWgaaWcbaGaamOAaiaaicdaaeqaaOGaey4kaS Yaa8qmaeqaleaacaWG0bWaaSbaaeaacaWGQbGaaGimaaqabaaabaGa amiDaaqdcqGHRiI8aOGaeqiYdK3aaSbaaSqaaiaadUgacaWGQbGaam OBamaaBaaabaGaaGimaaqabaaabeaakiaaiIcacaWG0bGaaGykaiaa dsgacaWG0baaaa@4CD5@

или

                                         z kj (t)= v ¯ k j0 + h 0 l=0 n 0 a kjl l+1 t t j0 h 0 l+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadUgacaWGQb aabeaakiaaiIcacaWG0bGaaGykaiaai2daceWG2bGbaebadaWgaaWc baGaam4AaaqabaGcdaWgaaWcbaGaamOAaiaaicdaaeqaaOGaey4kaS IaamiAamaaBaaaleaacaaIWaaabeaakmaaqahabeWcbaGaeS4eHWMa aGypaiaaicdaaeaacaWGUbWaaSbaaeaacaaIWaaabeaaa0GaeyyeIu oakmaalaaabaGaamyyamaaBaaaleaacaWGRbGaamOAaiabloriSbqa baaakeaacqWItecBcqGHRaWkcaaIXaaaamaabmaabaWaaSaaaeaaca WG0bGaeyOeI0IaamiDamaaBaaaleaacaWGQbGaaGimaaqabaaakeaa caWGObWaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCa aaleqabaGaeS4eHWMaey4kaSIaaGymaaaakiaai6caaaa@5899@                                             (12)

Полином (12) принимается за приближение решения v ˜ k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDaiaaiMcaaaa@364F@  на j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  -м подынтервале: v ˜ k (t) z kj (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaGaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDaiaaiMcacqGHijYUcaWG6bWaaSbaaSqaaiaa dUgacaWGQbaabeaakiaaiIcacaWG0bGaaGykaaaa@3D72@ , t[ t j , t j+1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaamOAaaqabaGccaaISaGaamiDamaaBaaaleaacaWGQbGa ey4kaSIaaGymaaqabaGccaaIDbaaaa@3C99@ . Вычисление значений полинома (12) производится по схеме Горнера при x=(t t j0 )/ h 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaiIcacaWG0bGaey OeI0IaamiDamaaBaaaleaacaWGQbGaaGimaaqabaGccaaIPaGaaG4l aiaadIgadaWgaaWcbaGaaGimaaqabaaaaa@3C34@ :

               z kj (x)= v ¯ kj0 +h a kj n 0 n 0 +1 x+ a kj n 0 1 n 0 x+ a kj n 0 2 n 0 1 x++ a kj0 x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadUgacaWGQb aabeaakiaaiIcacaWG4bGaaGykaiaai2daceWG2bGbaebadaWgaaWc baGaam4AaiaadQgacaaIWaaabeaakiabgUcaRiaadIgadaqadaqaai ablAcilnaabmaabaWaaeWaaeaadaWcaaqaaiaadggadaWgaaWcbaGa am4AaiaadQgacaWGUbWaaSbaaeaacaaIWaaabeaaaeqaaaGcbaGaam OBamaaBaaaleaacaaIWaaabeaakiabgUcaRiaaigdaaaGaamiEaiab gUcaRmaalaaabaGaamyyamaaBaaaleaacaWGRbGaamOAamaabmaaba GaamOBamaaBaaabaGaaGimaaqabaGaeyOeI0IaaGymaaGaayjkaiaa wMcaaaqabaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaaaaaOGaay jkaiaawMcaaiaadIhacqGHRaWkdaWcaaqaaiaadggadaWgaaWcbaGa am4AaiaadQgadaqadaqaaiaad6gadaWgaaqaaiaaicdaaeqaaiabgk HiTiaaikdaaiaawIcacaGLPaaaaeqaaaGcbaGaamOBamaaBaaaleaa caaIWaaabeaakiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaamiEai abgUcaRiablAciljabgUcaRiaadggadaWgaaWcbaGaam4AaiaadQga caaIWaaabeaaaOGaayjkaiaawMcaaiaadIhacaaIUaaaaa@6E53@

Значения v ¯ kjp = z kj ( t jp ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebadaWgaaWcbaGaam4Aai aadQgacaWGWbaabeaakiaai2dacaWG6bWaaSbaaSqaaiaadUgacaWG QbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadQgacaWGWbaabeaaki aaiMcaaaa@3E31@ , p= 1, n 0 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@36D8@ , из (12) в процессе компьютерной реализации оказываются более точными приближениями решения, чем получаемые непосредственно с помощью разностного метода. Эти значения целесообразно принять за новые уточненные значения в интерполяционных узлах для последующего интерполирования. Данный рекуррентный процесс позволяет существенно уточнить полученные приближения.

Аналогичное приближение строится на следующем подынтервале и т. д., до исчерпания интервала [ a i , b i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyyamaaBaaaleaacaWGPb aabeaakiaaiYcacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaGyxaaaa @3858@ . Полученное приближение по построению является непрерывным и непрерывно дифференцируемым на всем отрезке интегрирования. Также одновременно с приближением решения имеет место непрерывное на всем рассматриваемом интервале приближение производной от решения.

2.2 Условия устойчивости в аддитивной и интегральной форме

Далее приводится вывод условий устойчивости нулевого решения системы (1), при этом на ненулевое решение и его производную не ставится знак волны.

Для получения условий устойчивости системы (1) в аддитивной форме выполним следующее преобразование соотношения (3)

           v k (t)=exp lim i l=0 i ln(1+h D il (k) ) v k ( t 0 )k 1,n ¯ , D il (k) = u k ( t il , V il ) v k(il) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiGacwgacaGG4bGaaiiCamaabmaa baWaaybuaeqaleaacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBai aacMgacaGGTbaaamaaqahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaa caWGPbaaniabggHiLdGcciGGSbGaaiOBaiaaiIcacaaIXaGaey4kaS IaamiAaiaadseadaqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaa iIcacaWGRbGaaGykaaaakiaaiMcaaiaawIcacaGLPaaacaWG2bWaaS baaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqa baGccaaIPaGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaig dacaaISaGaamOBaaaacaaISaGaaGzbVlaadseadaqhaaWcbaGaamyA aiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaai2dada WcaaqaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaa BaaaleaacaWGPbGaeyOeI0IaeS4eHWgabeaakiaaiYcacaWGwbWaaS baaSqaaiaadMgacqGHsislcqWItecBaeqaaOGaaGykaaqaaiaadAha daWgaaWcbaGaam4AaiaaiIcacaWGPbGaeyOeI0IaeS4eHWMaaGykaa qabaaaaOGaaGOlaaaa@7F3B@

С учетом того, что h D il (k) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaamiramaaDaaaleaacaWGPb GaeyOeI0IaeS4eHWgabaGaaGikaiaadUgacaaIPaaaaaaa@3905@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ бесконечно малая, и соотношения

                                      ln(1+h D il (k) ) h D il (k) 1li,k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiGacYgacaGGUbGaaGikai aaigdacqGHRaWkcaWGObGaamiramaaDaaaleaacaWGPbGaeyOeI0Ia eS4eHWgabaGaaGikaiaadUgacaaIPaaaaOGaaGykaaqaaiaadIgaca WGebWaa0baaSqaaiaadMgacqGHsislcqWItecBaeaacaaIOaGaam4A aiaaiMcaaaaaaOGaeyOKH4QaaGymaiaaywW7cqGHaiIicqWItecBcq GHKjYOcaWGPbGaaGilaiaaywW7cqGHaiIicaWGRbGaeyicI48aa0aa aeaacaaIXaGaaGilaiaad6gaaaGaaGilaaaa@56E0@

получим аддитивную форму условий устойчивости нулевого решения системы (1):

      lim i l=0 i h D il (k) c 2 , c 2 =constt[ t 0 ,),k 1,n ¯ , lim t lim i l=0 i h D il (k) =. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadMgacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaabCaeqaleaacqWI tecBcaaI9aGaaGimaaqaaiaadMgaa0GaeyyeIuoakiaadIgacaWGeb Waa0baaSqaaiaadMgacqGHsislcqWItecBaeaacaaIOaGaam4Aaiaa iMcaaaGccqGHKjYOcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaGilai aaywW7caWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaadogacaWG VbGaamOBaiaadohacaWG0bGaaGzbVlabgcGiIiaadshacqGHiiIZca aIBbGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqGHEisPcaaI PaGaaGilaiaaywW7cqGHaiIicaWGRbGaeyicI48aa0aaaeaacaaIXa GaaGilaiaad6gaaaGaaGilaiaaywW7daGfqbqabSqaaiaadshacqGH sgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaybuaeqale aacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaaqahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGPbaaniabgg HiLdGccaWGObGaamiramaaDaaaleaacaWGPbGaeyOeI0IaeS4eHWga baGaaGikaiaadUgacaaIPaaaaOGaaGypaiabgkHiTiabg6HiLkaai6 caaaa@88F7@

Выражение в левой части аддитивных условий " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ предел интегральной суммы на [ t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGyxaaaa@3725@  элементами которой являются дискретные функции

                                              D (k) (t)= u k (t,V) v k (t) ,k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaWbaaSqabeaacaaIOaGaam 4AaiaaiMcaaaGccaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaWG 1bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaISaGaamOvai aaiMcaaeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsha caaIPaaaaiaaiYcacaaMf8Uaam4AaiabgIGiopaanaaabaGaaGymai aaiYcacaWGUbaaaiaai6caaaa@4ABE@

Следовательно, выражения аддитивных условий включают определенные интегралы, и условия можно сформулировать в интегральной форме:

                       t 0 t u k (t,V) v k (t) dt c 2 , c 2 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgsMiJkaadogadaWgaaWcbaGaaGOmaaqaba GccaaISaGaaGzbVlaadogadaWgaaWcbaGaaGOmaaqabaGccaaI9aGa am4yaiaad+gacaWGUbGaam4CaiaadshacaaISaGaaGzbVlabgcGiIi aadshacqGHiiIZcaaIBbGaamiDamaaBaaaleaacaaIWaaabeaakiaa iYcacqGHEisPcaaIPaGaaGilaiaaywW7cqGHaiIicaWGRbGaeyicI4 8aa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGilaaaa@6462@                            (13)

                                          lim t t 0 t u k (t,V) v k (t) dt=k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaWG 0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaWcaa qaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiYca caWGwbGaaGykaaqaaiaadAhadaWgaaWcbaGaam4AaaqabaGccaaIOa GaamiDaiaaiMcaaaGaamizaiaadshacaaI9aGaeyOeI0IaeyOhIuQa aGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaam OBaaaacaaIUaaaaa@5611@                                              (14)

Числитель переменной дроби D (k) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaWbaaSqabeaacaaIOaGaam 4AaiaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@3774@  является производной возмущения решения и делится на само возмущение, поэтому существует первообразная

                                                  t 0 t D (k) (t)dt=ln v k (t) v k ( t 0 ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadseadaahaaWcbeqa aiaaiIcacaWGRbGaaGykaaaakiaaiIcacaWG0bGaaGykaiaadsgaca WG0bGaaGypaiGacYgacaGGUbWaaqWaaeaadaWcaaqaaiaadAhadaWg aaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiMcaaeaacaWG2bWaaS baaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqa baGccaaIPaaaaaGaay5bSlaawIa7aiaai6caaaa@4EDA@

Соответственно условия (13) (14) примут следующий вид:

                          ln v k (t) v k ( t 0 ) c 2 , c 2 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGSbGaaiOBamaaemaabaWaaSaaae aacaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaaa baGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGykaaaaaiaawEa7caGLiWoacqGHKjYOcaWG JbWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaywW7caWGJbWaaSbaaS qaaiaaikdaaeqaaOGaaGypaiaadogacaWGVbGaamOBaiaadohacaWG 0bGaaGilaiaaywW7cqGHaiIicaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaiaaiYcacaaM f8UaeyiaIiIaam4AaiabgIGiopaanaaabaGaaGymaiaaiYcacaWGUb aaaiaaiYcaaaa@61E5@

                                            lim t ln v k (t) v k ( t 0 ) =k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaciiBaiaac6gadaab daqaamaalaaabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcaca WG0bGaaGykaaqaaiaadAhadaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaaacaGLhWUaayjcSd GaaGypaiabgkHiTiabg6HiLkaaywW7cqGHaiIicaWGRbGaeyicI48a a0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGOlaaaa@5394@  

2.3 Схема анализа устойчивости на основе сравнения подынтегральных функций

Лемма 1 Рассмотрим систему (1), где t 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@352C@  и v k (t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaeyiyIKRaaGimaaaa@38C1@  при всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@  и всех k 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48aa0aaaeaacaaIXa GaaGilaiaad6gaaaaaaa@36AA@ . Если для любого Δ 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@359A@  найдется такое V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaa aa@3382@ , что 0< V 0 Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfadaWgaaWcbaGaaGimaaqabaGccqWFLicu cqGHKjYOcqqHuoardaWgaaWcbaGaaGymaaqabaaaaa@3FE1@ , а также существуют k 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48aa0aaaeaacaaIXa GaaGilaiaad6gaaaaaaa@36AA@  и ρ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaI+aGaaGimaaaa@3503@ , ρ=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaI9aGaam4yaiaad+gaca WGUbGaam4Caiaadshaaaa@3908@ , при которых u k / v k ρ/t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHLjYScqaHbpGC caaIVaGaamiDaaaa@3BF3@  при всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@ , то нулевое решение системы (1) неустойчиво.

Proof. В сколь угодно малой окрестности нулевого начального вектора выполняется неравенство

                                          t 0 t u k (t,V) v k (t) dtρ t 0 t 1 t dt=ρln t t 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgwMiZkabeg8aYnaapedabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOWaaSaaaeaa caaIXaaabaGaamiDaaaacaWGKbGaamiDaiaai2dacqaHbpGCciGGSb GaaiOBamaalaaabaGaamiDaaqaaiaadshadaWgaaWcbaGaaGimaaqa baaaaOGaaGilaaaa@5782@

поэтому для произвольного N>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobGaaGOpaiaaicdaaaa@3416@  

                                                      t 0 t u k (t,V) v k (t) dt>N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiaai6dacaWGobGaaGilaaaa@4593@

если t> t 0 e N/ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaadshadaWgaaWcba GaaGimaaqabaGccaWGLbWaaWbaaSqabeaacaWGobGaaG4laiabeg8a Ybaaaaa@39CE@ , что противоречит (13).

Лемма 2 В условиях леммы 1, если существуют постоянные α>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaeyOeI0IaaGymaa aa@35D0@  и ρ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaI+aGaaGimaaaa@3503@ , при которых u k / v k ρ t α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHLjYScqaHbpGC caWG0bWaaWbaaSqabeaacqaHXoqyaaaaaa@3D06@  для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@ , то нулевое решение системы (1) неустойчиво.

Proof. В сколь угодно малой окрестности нулевого начального вектора имеем

                    t 0 t u k (t,V) v k (t) dtρ t 0 t t α dt= ρ α+1 ( t α+1 t 0 α+1 )при t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgwMiZkabeg8aYnaapedabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamiDamaa CaaaleqabaGaeqySdegaaOGaamizaiaadshacaaI9aWaaSaaaeaacq aHbpGCaeaacqaHXoqycqGHRaWkcaaIXaaaaiaaiIcacaWG0bWaaWba aSqabeaacqaHXoqycqGHRaWkcaaIXaaaaOGaeyOeI0IaamiDamaaDa aaleaacaaIWaaabaGaeqySdeMaey4kaSIaaGymaaaakiaaiMcacqGH sgIRcqGHEisPcaaMf8Uaae4peiaabcebcaqG4qGaaeiiaiaabshacq GHsgIRcqGHEisPaaa@6E61@

вопреки (13).

Лемма 3 Если в условиях леммы 1 существует такое Δ 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@359A@ , что для всех решений V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@  с начальным вектором V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaa aa@3382@ , удовлетворяющих условию 0< V 0 Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfadaWgaaWcbaGaaGimaaqabaGccqWFLicu cqGHKjYOcqqHuoardaWgaaWcbaGaaGymaaqabaaaaa@3FE1@ , при некоторых постоянных β<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaI8aGaeyOeI0IaaGymaa aa@35D0@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@3381@  и t 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@352C@  неравенства u k / v k ρ t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcqaHbpGC caWG0bWaaWbaaSqabeaacqaHYoGyaaaaaa@3CF7@ выполняются для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@  и всех k=1,2,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3926@ , то нулевое решение системы (1) устойчиво.

Proof. В данных условиях β+1<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHRaWkcaaIXaGaaGipai aaicdaaaa@367F@  и t β+1 t 0 β+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaWbaaSqabeaacqaHYoGycq GHRaWkcaaIXaaaaOGaeyizImQaamiDamaaDaaaleaacaaIWaaabaGa eqOSdiMaey4kaSIaaGymaaaaaaa@3D02@ , поэтому

                                        t 0 t t β dt= 1 β+1 ( t β+1 t 0 β+1 ) t 0 β+1 |β+1| . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadshadaahaaWcbeqa aiabek7aIbaakiaadsgacaWG0bGaaGypamaalaaabaGaaGymaaqaai abek7aIjabgUcaRiaaigdaaaGaaGikaiaadshadaahaaWcbeqaaiab ek7aIjabgUcaRiaaigdaaaGccqGHsislcaWG0bWaa0baaSqaaiaaic daaeaacqaHYoGycqGHRaWkcaaIXaaaaOGaaGykaiabgsMiJoaalaaa baGaamiDamaaDaaaleaacaaIWaaabaGaeqOSdiMaey4kaSIaaGymaa aaaOqaaiaaiYhacqaHYoGycqGHRaWkcaaIXaGaaGiFaaaacaaIUaaa aa@591C@

Для всех решений V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , для которых 0<V( t 0 ) Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfacaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiMcacqWFLicucqGHKjYOcqqHuoardaWgaaWcbaGaaGymaa qabaaaaa@423F@ , верны неравенства

                                          t 0 t u k (t,V) v k (t) dtρ t 0 t t β dt ρ t 0 β+1 |β+1| , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgsMiJkabeg8aYnaapedabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamiDamaa CaaaleqabaGaeqOSdigaaOGaamizaiaadshacqGHKjYOdaWcaaqaai abeg8aYjaadshadaqhaaWcbaGaaGimaaqaaiabek7aIjabgUcaRiaa igdaaaaakeaacaaI8bGaeqOSdiMaey4kaSIaaGymaiaaiYhaaaGaaG ilaaaa@5F18@

и (13) выполнено при c 2 =ρ t 0 β+1 /|β+1|=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiabeg8aYjaadshadaqhaaWcbaGaaGimaaqaaiabek7aIjab gUcaRiaaigdaaaGccaaIVaGaaGiFaiabek7aIjabgUcaRiaaigdaca aI8bGaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0baaaa@46D4@ .

Из лемм 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 3 вытекает следующее утверждение.

Теорема 1  Пусть t 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@352C@  и для произвольного t> t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaadshadaWgaaWcba GaaGimaaqabaaaaa@3561@  при каждом k 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48aa0aaaeaacaaIXa GaaGilaiaad6gaaaaaaa@36AA@  функции f k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3630@ , g k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3631@  интегрируемы на [ t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGyxaaaa@3725@ . Если в рассматриваемых условиях существует такое Δ 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@359A@ , что для всех решений V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющих условию 0<V( t 0 ) Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfacaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiMcacqWFLicucqGHKjYOcqqHuoardaWgaaWcbaGaaGymaa qabaaaaa@423F@ , выполняются неравенства

                u k v k f k (t), t 0 t f k (t)dt c 2 , c 2 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadwhadaWgaaWcbaGaam 4AaaqabaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaaaakiabgsMi JkaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiMcaca aISaGaaGzbVpaapedabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaa baGaamiDaaqdcqGHRiI8aOGaamOzamaaBaaaleaacaWGRbaabeaaki aaiIcacaWG0bGaaGykaiaadsgacaWG0bGaeyizImQaam4yamaaBaaa leaacaaIYaaabeaakiaaiYcacaaMf8Uaam4yamaaBaaaleaacaaIYa aabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGaamiDaiaaiYca caaMf8UaeyiaIiIaamiDaiabgIGiolaaiUfacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGilaiabg6HiLkaaiMcacaaISaGaaGzbVlabgcGi IiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaacaaISa aaaa@6AEC@

то нулевое решение системы (1) устойчиво. Если для любого Δ 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@359A@  существует такое V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющее условию 0<V( t 0 ) Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfacaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiMcacqWFLicucqGHKjYOcqqHuoardaWgaaWcbaGaaGymaa qabaaaaa@423F@ , что u k / v k g k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHLjYScaWGNbWa aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3CF1@  для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@  при некотором k 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48aa0aaaeaacaaIXa GaaGilaiaad6gaaaaaaa@36AA@ , причем

                                             t 0 t g k (t)dtпри t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadEgadaWgaaWcbaGa am4AaaqabaGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgkziUk abg6HiLkaaywW7caqG=qGaaeiqeiaabIdbcaqGGaGaaeiDaiabgkzi Ukabg6HiLkaabYcacaqGGaaaaa@4A96@

то нулевое решение системы (1) неустойчиво.

Proof. Если u k / v k f k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcaWGMbWa aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3CDF@  для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@  и всех k=1,2,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3926@ , то при тех же t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  и k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  выполнено неравенство

                                  t 0 t u k (t,V) v k (t) dt t 0 t f k (t)dt c 2 , c 2 =const. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgsMiJoaapedabeWcbaGaamiDamaaBaaaba GaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamOzamaaBaaaleaa caWGRbaabeaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaeyizIm Qaam4yamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMf8Uaam4yamaa BaaaleaacaaIYaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZb GaamiDaiaai6caaaa@5E35@

С учетом условия и соотношения (13) это неравенство означает устойчивость нулевого решения. Если u k / v k g k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHLjYScaWGNbWa aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3CF1@  для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@ , то

                  t 0 t u k (t,V) v k (t) dt t 0 t g k (t)dt t 0 t u k (t,V) v k (t) dtпри t, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgwMiZoaapedabeWcbaGaamiDamaaBaaaba GaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaam4zamaaBaaaleaa caWGRbaabeaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGzbVl abgkDiElaaywW7daWdXaqabSqaaiaadshadaWgaaqaaiaaicdaaeqa aaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaaBaaaleaaca WGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPaaabaGaamOD amaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaaaacaWGKb GaamiDaiabgkziUkabg6HiLkaaywW7caqG=qGaaeiqeiaabIdbcaqG GaGaaeiDaiabgkziUkabg6HiLkaaiYcaaaa@743B@

что противоречит (13).

Следствие 1 В тех же условиях нулевое решение системы (1) устойчиво, если u k / v k t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcaWG0bWa aWbaaSqabeaacqaHYoGyaaaaaa@3B37@  для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@  и всех k=1,2,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3926@  при некотором β<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaI8aGaeyOeI0IaaGymaa aa@35D0@ , и неустойчиво, если хотя бы при одном k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  неравенство u k / v k t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHLjYScaWG0bWa aWbaaSqabeaacqaHYoGyaaaaaa@3B48@  выполнено для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@ , где β1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHLjYScqGHsislcaaIXa aaaa@36D0@ .

Теорема 2 Если выполнено условие устойчивости теоремы 1 и существует такое Δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGOmaaqaba aaaa@340F@ , 0< Δ 2 Δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabfs5aenaaBaaale aacaaIYaaabeaakiabgsMiJkabfs5aenaaBaaaleaacaaIXaaabeaa aaa@399B@ , что для всех решений V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющих условию 0<V( t 0 ) Δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfacaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiMcacqWFLicucqGHKjYOcqqHuoardaWgaaWcbaGaaGOmaa qabaaaaa@4240@ , неравенство u k / v k f k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcaWGMbWa aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3CDF@  верно для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@39E6@  и при этом

                                               t 0 f k (t)dt=k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiabg6HiLcqdcqGHRiI8aOGaamOzamaaBaaaleaa caWGRbaabeaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGypai abgkHiTiabg6HiLkaaywW7cqGHaiIicaWGRbGaeyicI48aa0aaaeaa caaIXaGaaGilaiaad6gaaaGaaGilaaaa@48AD@

то нулевое решение системы (1) асимптотически устойчиво. В частности, это справедливо, если при тех же k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  и t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  для некоторых постоянных β1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHLjYScqGHsislcaaIXa aaaa@36D0@  и ρ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaI+aGaaGimaaaa@3503@  выполняется неравенство u k / v k ρ t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcqGHsisl cqaHbpGCcaWG0bWaaWbaaSqabeaacqaHYoGyaaaaaa@3DE4@ .

Proof. В условиях теоремы для всех N>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobGaaGOpaiaaicdaaaa@3416@  выполнены неравенства

                        t 0 t u k (t,V) v k (t) dt t 0 t f k (t)dtNt[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgsMiJoaapedabeWcbaGaamiDamaaBaaaba GaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamOzamaaBaaaleaa caWGRbaabeaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaeyizIm QaeyOeI0IaamOtaiaaywW7cqGHaiIicaWG0bGaeyicI4SaaG4waiaa dshadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaiaaiY cacaaMf8UaeyiaIiIaam4AaiabgIGiopaanaaabaGaaGymaiaaiYca caWGUbaaaiaai6caaaa@66F6@

Переходя к пределу в неравенстве при N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobGaeyOKH4QaeyOhIukaaa@35F2@ , получим

                                                  lim t t 0 t u k (t,V) v k (t) dt=, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaWG 0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaWcaa qaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiYca caWGwbGaaGykaaqaaiaadAhadaWgaaWcbaGaam4AaaqabaGccaaIOa GaamiDaiaaiMcaaaGaamizaiaadshacaaI9aGaeyOeI0IaeyOhIuQa aGilaaaa@4EC8@

что с учетом условий и соотношения (14) означает асимптотическую устойчивость нулевого решения системы (1). В случае β1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHLjYScqGHsislcaaIXa aaaa@36D0@ , ρ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaI+aGaaGimaaaa@3503@  имеем

                                            ρ t 0 t t β dtпри t, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHbpGCdaWdXaqabSqaai aadshadaWgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaa dshadaahaaWcbeqaaiabek7aIbaakiaadsgacaWG0bGaeyOKH4Qaey OeI0IaeyOhIuQaaGzbVlaab+dbcaqGarGaaeioeiaabccacaqG0bGa eyOKH4QaeyOhIuQaaGilaaaa@4BF5@

и в данных условиях неравенство u k / v k ρ t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaG4laiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcqGHsisl cqaHbpGCcaWG0bWaaWbaaSqabeaacqaHYoGyaaaaaa@3DE4@  влечет асимптотическую устойчивость нулевого решения системы (1).

Представленную схему анализа устойчивости на основе сравнения подынтегральных функций можно использовать для априорного и апостериорного анализа устойчивости, если известно аналитическое решение в окрестности начального вектора (см. [8]).

2.4 Условия устойчивости по характеру поведения правой части системы

Ниже дополнительно предполагается существование и непрерывность в R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3298@  второй производной решения системы (1) и выполнение для U (t,V) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGvbGbauaacaaIOaGaamiDaiaaiY cacaWGwbGaaGykaaaa@3696@  условия Липшица. Кроме того, предполагается что существует такое Δ 3 δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaG4maaqaba GccqGHKjYOcqaH0oazaaa@3774@ , что для каждого V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющего условию V 0 Δ 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGwbWaaSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQaeuiL dq0aaSbaaSqaaiaaiodaaeqaaaaa@3E63@ , выполняется неравенство

       t 0 t u k (t,V) v k (t) dt c 3 t 0 t u k (t,V) u k (t,V) dt, c 3 =const, c 3 >0,t[ t 0 ,),k 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPa aabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGyk aaaacaWGKbGaamiDaiabgsMiJkaadogadaWgaaWcbaGaaG4maaqaba GcdaWdXaqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadsha a0Gaey4kIipakmaalaaabaGabmyDayaafaWaaSbaaSqaaiaadUgaae qaaOGaaGikaiaadshacaaISaGaamOvaiaaiMcaaeaacaWG1bWaaSba aSqaaiaadUgaaeqaaOGaaGikaiaadshacaaISaGaamOvaiaaiMcaaa GaamizaiaadshacaaISaGaaGzbVlaadogadaWgaaWcbaGaaG4maaqa baGccaaI9aGaam4yaiaad+gacaWGUbGaam4CaiaadshacaaISaGaaG zbVlaadogadaWgaaWcbaGaaG4maaqabaGccaaI+aGaaGimaiaaiYca caaMf8UaeyiaIiIaamiDaiabgIGiolaaiUfacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGilaiabg6HiLkaaiMcacaaISaGaaGzbVlabgcGi IiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaaaaa@7C6C@           (15)

(см. [9]), или следующее неравенство, из которого следует (15):

              u k (t,V) v k (t) c 4 u k (t,V) u k (t,V) , c 4 =const, c 4 >0,t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadwhadaWgaaWcbaGaam 4AaaqabaGccaaIOaGaamiDaiaaiYcacaWGwbGaaGykaaqaaiaadAha daWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiMcaaaGaeyizIm Qaam4yamaaBaaaleaacaaI0aaabeaakmaalaaabaGabmyDayaafaWa aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaISaGaamOvaiaaiM caaeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaI SaGaamOvaiaaiMcaaaGaaGilaiaaywW7caWGJbWaaSbaaSqaaiaais daaeqaaOGaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0bGaaGil aiaaywW7caWGJbWaaSbaaSqaaiaaisdaaeqaaOGaaGOpaiaaicdaca aISaGaaGzbVlabgcGiIiaadshacqGHiiIZcaaIBbGaamiDamaaBaaa leaacaaIWaaabeaakiaaiYcacqGHEisPcaaIPaGaaGilaiaaywW7cq GHaiIicaWGRbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaad6gaaaGa aGOlaaaa@6F61@                  (16)

При выполнении данных ограничений и неравенства (15) или (16) для устойчивости нулевого решения системы (1) достаточно существование такого Δ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGinaaqaba aaaa@3411@ , 0< Δ 4 δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabfs5aenaaBaaale aacaaI0aaabeaakiabgsMiJkabes7aKbaa@38F5@ , что для любого V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющего условию V 0 Δ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGwbWaaSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQaeuiL dq0aaSbaaSqaaiaaisdaaeqaaaaa@3E64@ , выполняется неравенство

                        t 0 t u k (t,V) u k (t,V) dt c 5 , c 5 =const,t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGabmyDayaa faWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaISaGaamOvai aaiMcaaeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsha caaISaGaamOvaiaaiMcaaaGaamizaiaadshacqGHKjYOcaWGJbWaaS baaSqaaiaaiwdaaeqaaOGaaGilaiaaywW7caWGJbWaaSbaaSqaaiaa iwdaaeqaaOGaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0bGaaG ilaiaaywW7cqGHaiIicaWG0bGaeyicI4SaaG4waiaadshadaWgaaWc baGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaiaaiYcacaaMf8Uaey iaIiIaam4AaiabgIGiopaanaaabaGaaGymaiaaiYcacaWGUbaaaiaa i6caaaa@6606@                            (17) 

Для асимптотической устойчивости нулевого решения системы (1) достаточно, чтобы решение было устойчиво и существовало такое Δ 5 Δ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGynaaqaba GccqGHKjYOcqqHuoardaWgaaWcbaGaaGinaaqabaaaaa@3821@ , что неравенство V 0 Δ 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGwbWaaSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQaeuiL dq0aaSbaaSqaaiaaiwdaaeqaaaaa@3E65@  влечет

                                                  lim t t 0 t u k (t,V) u k (t,V) dt=. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaWG 0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaWcaa qaaiqadwhagaqbamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGa aGilaiaadAfacaaIPaaabaGaamyDamaaBaaaleaacaWGRbaabeaaki aaiIcacaWG0bGaaGilaiaadAfacaaIPaaaaiaadsgacaWG0bGaaGyp aiabgkHiTiabg6HiLkaai6caaaa@5066@                                                       (18)

Условия устойчивости (17), (18) можно сформулировать в следующей эквивалентной форме.

Для устойчивости нулевого решения системы (1) достаточно существование такого Δ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGinaaqaba aaaa@3411@ , 0< Δ 4 δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabfs5aenaaBaaale aacaaI0aaabeaakiabgsMiJkabes7aKbaa@38F5@ , что для любого V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющего условию 0< V 0 Δ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfadaWgaaWcbaGaaGimaaqabaGccqWFLicu cqGHKjYOcqqHuoardaWgaaWcbaGaaGinaaqabaaaaa@3FE4@ , выполняется соотношение

             u k (t,V) u k ( t 0 , V 0 ) c 6 , c 6 =const,t[ t 0 ,), u k ( t 0 , V 0 )0,k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaalaaabaGaamyDamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPaaa baGaamyDamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGilaiaadAfadaWgaaWcbaGaaGimaaqabaGc caaIPaaaaaGaay5bSlaawIa7aiabgsMiJkaadogadaWgaaWcbaGaaG OnaaqabaGccaaISaGaaGzbVlaadogadaWgaaWcbaGaaGOnaaqabaGc caaI9aGaam4yaiaad+gacaWGUbGaam4CaiaadshacaaISaGaaGzbVl abgcGiIiaadshacqGHiiIZcaaIBbGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacqGHEisPcaaIPaGaaGilaiaaywW7caWG1bWaaSbaaS qaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGc caaISaGaamOvamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHGjsUca aIWaGaaGilaiaaywW7cqGHaiIicaWGRbGaeyicI48aa0aaaeaacaaI XaGaaGilaiaad6gaaaGaaGOlaaaa@70CF@                  (19)

Для асимптотической устойчивости достаточно, чтобы решение было устойчиво и существовало такое Δ 5 Δ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGynaaqaba GccqGHKjYOcqqHuoardaWgaaWcbaGaaGinaaqabaaaaa@3821@ , что условие 0< V 0 Δ 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfadaWgaaWcbaGaaGimaaqabaGccqWFLicu cqGHKjYOcqqHuoardaWgaaWcbaGaaGynaaqabaaaaa@3FE5@  влечет

                                   lim t u k (t,V) u k ( t 0 , V 0 ) =0, u k ( t 0 )0,k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaqWaaeaadaWcaaqa aiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiYcaca WGwbGaaGykaaqaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWGwbWaaSbaaSqaai aaicdaaeqaaOGaaGykaaaaaiaawEa7caGLiWoacaaI9aGaaGimaiaa iYcacaaMf8UaamyDamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0b WaaSbaaSqaaiaaicdaaeqaaOGaaGykaiabgcMi5kaaicdacaaISaGa aGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaam OBaaaacaaIUaaaaa@5F05@                                       (20)

Если для всех V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющих условию 0< V 0 Δ 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfadaWgaaWcbaGaaGimaaqabaGccqWFLicu cqGHKjYOcqqHuoardaWgaaWcbaGaaGOnaaqabaaaaa@3FE6@ , дополнительно потребовать выполнение неравенства

           t 0 t u k (t,V) u k (t,V) dt t 0 t u k (t,V) v k (t) dt c 0 , c 0 =const,t[ t 0 ,),k 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaapedabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOWaaSaaaeaa ceWG1bGbauaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiY cacaWGwbGaaGykaaqaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaI OaGaamiDaiaaiYcacaWGwbGaaGykaaaacaWGKbGaamiDaiabgkHiTm aapedabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqd cqGHRiI8aOWaaSaaaeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaG ikaiaadshacaaISaGaamOvaiaaiMcaaeaacaWG2bWaaSbaaSqaaiaa dUgaaeqaaOGaaGikaiaadshacaaIPaaaaiaadsgacaWG0baacaGLhW UaayjcSdGaeyizImQaam4yamaaBaaaleaacaaIWaaabeaakiaaiYca caaMf8Uaam4yamaaBaaaleaacaaIWaaabeaakiaai2dacaWGJbGaam 4Baiaad6gacaWGZbGaamiDaiaaiYcacaaMf8UaeyiaIiIaamiDaiab gIGiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6 HiLkaaiMcacaaISaGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqa aiaaigdacaaISaGaamOBaaaaaaa@7AD4@                (21)

то условия (17) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  (20) будут необходимыми и достаточными условиями устойчивости и асимптотической устойчивости.

Неравенство (21) преобразуется к виду

     e c 0 u k (t,V) v k (t) / u k ( t 0 , V 0 ) v k ( t 0 ) e c 0 , c 0 >0, c 0 =const,t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislca WGJbWaaSbaaeaacaaIWaaabeaaaaGccqGHKjYOdaabdaqaamaalaaa baGaamyDamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilai aadAfacaaIPaaabaGaamODamaaBaaaleaacaWGRbaabeaakiaaiIca caWG0bGaaGykaaaaaiaawEa7caGLiWoacaaIVaWaaqWaaeaadaWcaa qaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaa leaacaaIWaaabeaakiaaiYcacaWGwbWaaSbaaSqaaiaaicdaaeqaaO GaaGykaaqaaiaadAhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiD amaaBaaaleaacaaIWaaabeaakiaaiMcaaaaacaGLhWUaayjcSdGaey izImQaamyzamaaCaaaleqabaGaam4yamaaBaaabaGaaGimaaqabaaa aOGaaGilaiaaywW7caWGJbWaaSbaaSqaaiaaicdaaeqaaOGaaGOpai aaicdacaaISaGaaGzbVlaadogadaWgaaWcbaGaaGimaaqabaGccaaI 9aGaam4yaiaad+gacaWGUbGaam4CaiaadshacaaISaGaaGzbVlabgc GiIiaadshacqGHiiIZcaaIBbGaamiDamaaBaaaleaacaaIWaaabeaa kiaaiYcacqGHEisPcaaIPaGaaGilaiaaywW7cqGHaiIicaWGRbGaey icI48aa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGOlaaaa@7E18@          (22)

Выполнение соотношения (22) при u k (t,V)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaISaGaamOvaiaaiMcacqGHsgIRcaaIWaaaaa@3A77@  возможно только если v k (t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaeyOKH4QaaGimaaaa@38E7@ , иначе не выполнится левое неравенство в (22), а если v k (t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaeyOKH4QaaGimaaaa@38E7@ , то необходимо u k (t,V)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaISaGaamOvaiaaiMcacqGHsgIRcaaIWaaaaa@3A77@ , иначе нарушится правое неравенство.

Предложенный подход допускает конструировать условия устойчивости для производных правой части системы (1) произвольного порядка l2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWItecBcqGHLjYScaaIYaaaaa@3574@ , если эти производные существуют (см. [?]). В этом случае условия устойчивости и асимптотической устойчивости примут вид

                     t 0 t u k (l) (t,V) u k (l1) (t,V) dt c 7 , c 7 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaalaaabaGaamyDamaa DaaaleaacaWGRbaabaGaaGikaiabloriSjaaiMcaaaGccaaIOaGaam iDaiaaiYcacaWGwbGaaGykaaqaaiaadwhadaqhaaWcbaGaam4Aaaqa aiaaiIcacqWItecBcqGHsislcaaIXaGaaGykaaaakiaaiIcacaWG0b GaaGilaiaadAfacaaIPaaaaiaadsgacaWG0bGaeyizImQaam4yamaa BaaaleaacaaI3aaabeaakiaaiYcacaaMf8Uaam4yamaaBaaaleaaca aI3aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGaamiDaiaa iYcacaaMf8UaeyiaIiIaamiDaiabgIGiolaaiUfacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGilaiabg6HiLkaaiMcacaaISaGaaGzbVlab gcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaaca aISaaaaa@6CD2@

для всех V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющих условию V 0 Δ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGwbWaaSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQaeuiL dq0aaSbaaSqaaiaaisdaaeqaaaaa@3E64@ , и

                                       lim t t 0 t u k (l) (t,V) u k (l1) (t,V) dt=k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaWG 0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaWcaa qaaiaadwhadaqhaaWcbaGaam4AaaqaaiaaiIcacqWItecBcaaIPaaa aOGaaGikaiaadshacaaISaGaamOvaiaaiMcaaeaacaWG1bWaa0baaS qaaiaadUgaaeaacaaIOaGaeS4eHWMaeyOeI0IaaGymaiaaiMcaaaGc caaIOaGaamiDaiaaiYcacaWGwbGaaGykaaaacaWGKbGaamiDaiaai2 dacqGHsislcqGHEisPcaaMf8UaeyiaIiIaam4AaiabgIGiopaanaaa baGaaGymaiaaiYcacaWGUbaaaiaaiYcaaaa@5E75@

для всех V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющих условию V 0 Δ 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGwbWaaSbaaSqaaiaaicdaaeqaaOGae8xjIaLaeyizImQaeuiL dq0aaSbaaSqaaiaaiwdaaeqaaaaa@3E65@ .

Полученные условия будут необходимыми и достаточными условиями устойчивости и асимптотической устойчивости при ограничении

                             t 0 t u k (l) (t,V) u k (l1) (t,V) dt t 0 t u k (t,V) v k (t) dt c 0 , c 0 =const, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaapedabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOWaaSaaaeaa caWG1bWaa0baaSqaaiaadUgaaeaacaaIOaGaeS4eHWMaaGykaaaaki aaiIcacaWG0bGaaGilaiaadAfacaaIPaaabaGaamyDamaaDaaaleaa caWGRbaabaGaaGikaiabloriSjabgkHiTiaaigdacaaIPaaaaOGaaG ikaiaadshacaaISaGaamOvaiaaiMcaaaGaamizaiaadshacqGHsisl daWdXaqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadshaa0 Gaey4kIipakmaalaaabaGaamyDamaaBaaaleaacaWGRbaabeaakiaa iIcacaWG0bGaaGilaiaadAfacaaIPaaabaGaamODamaaBaaaleaaca WGRbaabeaakiaaiIcacaWG0bGaaGykaaaacaWGKbGaamiDaaGaay5b SlaawIa7aiabgsMiJkaadogadaWgaaWcbaGaaGimaaqabaGccaaISa GaaGzbVlaadogadaWgaaWcbaGaaGimaaqabaGccaaI9aGaam4yaiaa d+gacaWGUbGaam4CaiaadshacaaISaaaaa@6F1E@

для всех V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@ , удовлетворяющих условию 0< V 0 Δ 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAfadaWgaaWcbaGaaGimaaqabaGccqWFLicu cqGHKjYOcqqHuoardaWgaaWcbaGaaGOnaaqabaaaaa@3FE6@ . При этом дополнительно потребуется выполнение для U (l1) (t,V) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaWbaaSqabeaacaaIOaGaeS 4eHWMaeyOeI0IaaGymaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG wbGaaGykaaaa@3AFF@  условия Липшица.

При переходе к первообразным условия устойчивости и асимптотической устойчивости примут следующий вид:

         u k (l1) (t,V) u k (l1) ( t 0 , V 0 ) c 8 , c 8 =const,t[ t 0 ,), u k (l1) ( t 0 , V 0 )0,k 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaalaaabaGaamyDamaaDa aaleaacaWGRbaabaGaaGikaiabloriSjabgkHiTiaaigdacaaIPaaa aOGaaGikaiaadshacaaISaGaamOvaiaaiMcaaeaacaWG1bWaa0baaS qaaiaadUgaaeaacaaIOaGaeS4eHWMaeyOeI0IaaGymaiaaiMcaaaGc caaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWGwbWaaS baaSqaaiaaicdaaeqaaOGaaGykaaaaaiaawEa7caGLiWoacqGHKjYO caWGJbWaaSbaaSqaaiaaiIdaaeqaaOGaaGilaiaaywW7caWGJbWaaS baaSqaaiaaiIdaaeqaaOGaaGypaiaadogacaWGVbGaamOBaiaadoha caWG0bGaaGilaiaaywW7cqGHaiIicaWG0bGaeyicI4SaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaiaaiYca caaMf8UaamyDamaaDaaaleaacaWGRbaabaGaaGikaiabloriSjabgk HiTiaaigdacaaIPaaaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqa baGccaaISaGaamOvamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHGj sUcaaIWaGaaGilaiaaywW7cqGHaiIicaWGRbGaeyicI48aa0aaaeaa caaIXaGaaGilaiaad6gaaaGaaGilaaaa@7D8E@

                             lim t u k (l1) (t,V) u k (l1) ( t 0 , V 0 ) =0, u k (l1) ( t 0 , V 0 )0k 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaqWaaeaadaWcaaqa aiaadwhadaqhaaWcbaGaam4AaaqaaiaaiIcacqWItecBcqGHsislca aIXaGaaGykaaaakiaaiIcacaWG0bGaaGilaiaadAfacaaIPaaabaGa amyDamaaDaaaleaacaWGRbaabaGaaGikaiabloriSjabgkHiTiaaig dacaaIPaaaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI SaGaamOvamaaBaaaleaacaaIWaaabeaakiaaiMcaaaaacaGLhWUaay jcSdGaaGypaiaaicdacaaISaGaaGzbVlaadwhadaqhaaWcbaGaam4A aaqaaiaaiIcacqWItecBcqGHsislcaaIXaGaaGykaaaakiaaiIcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadAfadaWgaaWcbaGa aGimaaqabaGccaaIPaGaeyiyIKRaaGimaiaaywW7cqGHaiIicaWGRb GaeyicI48aa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGOlaaaa@6D8D@

Для компьютерной реализации условий устойчивости достаточно с высокой точностью находить приближенное решение системы, правой части системы вместе с производными требуемого порядка. Повышение точности разностного приближения решения и его производных, входящих в конструкцию условий, особенно необходимо при анализе устойчивости жестких систем ОДУ. В этом случае можно воспользоваться методами, представленными в [11] или методом варьируемого кусочно полиномиального приближения решения (см. [3]). Требуемые приближения находятся на основе кусочно-полиномиальной аппроксимации интерполяционными полиномами Лагранжа, преобразованными к форме полинома с числовыми коэффициентами. Компьютерная аппроксимация подынтегральных функций повышает точность вычисления интеграла. В результате повышается точность вычисления выражений в конструкции условий, как следствие повышается достоверность анализа устойчивости. Далее через заданный интервал времени вычисляется значение из левой части условия устойчивости. По характеру поведения этих значений делается вывод о характере устойчивости исследуемой системы. Ограниченное изменение соответствует устойчивости, стремление к нулю свидетельствует об асимптотической устойчивости, неограниченный рост является признаком неустойчивости решения системы ОДУ.

Для анализа устойчивости систем нелинейных ОДУ наряду с данным методом целесообразно применять методы описанные в [15, 14]. Эти методы, основанные на построении функций Ляпунова, предполагают аналитическое применение, в отдельных разновидностях допускают компьютерную реализацию.

3 Заключение

Представлен подход к анализу устойчивости по Ляпунову систем обыкновенных дифференциальных уравнений (ОДУ). Основой служат условия устойчивости, полученные на основе рекуррентных преобразований разностных схем численного интегрирования. Условия получены в мультипликативной, аддитивной и интегральной формах в виде необходимых и достаточных условий. Условия в интегральной форме допускают использование схемы анализа устойчивости на основе сравнения подынтегральных функций. Кроме этого в границах дополнительных ограничений представлены необходимые и достаточные условия устойчивости на основе поведения правой части системы ОДУ. Представлены ограничения, при которых получены условия устойчивости, выполнено их математическое обоснование.

Полученные условия устойчивости отличаются от известных построением на основе разностных схем. Для случая систем линейных ОДУ подход принципиально не использует преобразований правой части системы (см. [2]). В случае постоянной матрицы коэффициентов не требуется вычисления корней характеристического многочлена, при переменной матрице коэффициентов не нужно нахождение характеристических показателей. При выводе условий устойчивости для нелинейных систем не используются методы качественной теории дифференциальных уравнений. Предложенный подход допускает линеаризацию нелинейной системы, которая связана непосредственно с исследуемым решением. В этом случае подход опирается на предположение, что устойчивость решения системы общего вида эквивалентна устойчивости линеаризованной системы в достаточно малой окрестности возмущения начальных данных (см. [13]).

Помимо построения, отличие достигается в программируемости условий устойчивости для систем ОДУ в общем случае. Компьютерный анализ, исходя из необходимых и достаточных условий, должен позволить однозначно определить характер устойчивости, неустойчивости либо асимптотической устойчивости систем ОДУ.

×

About the authors

S. G. Bulanov

Federal State Budgetary Educational Institution of Higher Education “Rostov State University of Economics (RINH)”

Author for correspondence.
Email: bulanovtgpi@mail.ru

Taganrog Institute named after A.P. Chekhov

Russian Federation, Rostov

References

  1. Белоглазов В. В., Бирюк Н. Д., Глухов И. Л. Численный анализ устойчивости параметрического контура первым методом Ляпунова Вестн. ВГУ. Сер. Физ. Мат. 2012 1 13–20
  2. Буланов С. Г. Анализ устойчивости систем линейных дифференциальных уравнений на основе преобразования разностных схем Мехатрон. Автомат. Управл. 2019 20 9 542–549
  3. Джанунц Г. А., Ромм Я. Е. Варьируемое кусочно-интерполяционное решение задачи Коши для обыкновенных дифференциальных уравнений с итерационным уточнением Ж. вычисл. мат. мат. физ. 2017 57 10 1641–1660
  4. Куликов Л. И. Синтез автоматического управления посадкой БЛА самолетного типа и анализ устойчивости желаемых режимов движения Фундам. прикл. мат. 2018 2 209–220
  5. Орлов А. И., Волков С. В. Анализ устойчивости синхронных генераторов, оснащенных устройством автоматического регулирования возбуждения Вестн. Иркут. гос. техн. ун-та. 2017 21 1 120–128
  6. Поляк Б. Т., Кузнецов О. Н., Чумаченко В. В. Исследование устойчивости энергосистемы с однополярным магнитным тормозом Автомат. телемех. 2016 9 58–69
  7. Ромм Я. Е., Буланов С. Г. Численное моделирование устойчивости по Ляпунову Совр. наукоем. технол. 2021 7 42–60
  8. Ромм Я. Е. Компьютерно-ориентированный анализ устойчивости на основе рекуррентных преобразований разностных решений обыкновенных дифференциальных уравнений Киберн. сист. анал. 2015 51 3 107–124
  9. Ромм Я. Е. Компьютерно-ориентированный анализ устойчивости по знакам компонентов решения дифференциальной системы и их двух производных Совр. наукоем. технол. 2021 9 100–124
  10. Ромм Я. Е. О необходимых и достаточных условиях устойчивости по Ляпунову Совр. наукоем. технол. 2022 2 92–109
  11. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи М. Мир 1999
  12. Чезари Л. Асимптотическое поведение и устойчивость решений обыкновенных дифференциальных уравнений М. Мир 1964
  13. Bulanov S. G. Computer analysis of differential systems stability based on linearization and matrix multiplicative criteria J. Phys. Conf. Ser. 2021 1902 012101
  14. Hafstein S. A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations Dynam. Syst. 2005 20 281–299
  15. Zhaolu T., Chuanqing G. A numerical algorithm for Lyapunov equations J. Appl. Math. Comput. 2008 202 1 44–53

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Буланов С.G.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».