New identities from enumeration of graphs

Cover Page

Cite item

Full Text

Abstract

In this paper, three new combinatorial identities related to the enumeration of labeled connected graphs with a given number of endpoints are presented. We give a proof of these identities independent of the enumeration of graphs. For one of the identities, a course of the proof based on formulas for enumerating graphs is outlined.

Full Text

Комбинаторные тождества часто возникают при перечислении графов (см. [2-4]). Из формул перечисления помеченных связных графов с заданным числом концевых вершин (см. [1, 9, 10]) следует несколько новых тождеств. В статье приведены доказательства трех таких тождеств, не зависящие от перечисления графов. Для одного из тождеств намечен ход доказательства с помощью формул для перечисления графов. 

Теорема 1  При n3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaG4maaaa@3537@  верно комбинаторное тождесто

                                              i=0 n3 j=3 ni (1) i (ni) nj1 i!(nij)! = 1 n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG imaaqaaiaad6gacqGHsislcaaIZaaaniabggHiLdGcdaaeWbqabSqa aiaadQgacaaI9aGaaG4maaqaaiaad6gacqGHsislcaWGPbaaniabgg HiLdGccaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadMga aaGcdaWcaaqaaiaaiIcacaWGUbGaeyOeI0IaamyAaiaaiMcadaahaa Wcbeqaaiaad6gacqGHsislcaWGQbGaeyOeI0IaaGymaaaaaOqaaiaa dMgacaaIHaGaaGikaiaad6gacqGHsislcaWGPbGaeyOeI0IaamOAai aaiMcacaaIHaaaaiaai2dadaWcaaqaaiaaigdaaeaacaWGUbaaaiaa i6caaaa@595B@                                 (1)

 

Proof. Обозначим левую часть тождества (1) через L 1 (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaIPaaaaa@35DB@ . После замены индекса суммирования во внешней сумме s=ni MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaad6gacqGHsislca WGPbaaaa@364E@ , i=ns MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaad6gacqGHsislca WGZbaaaa@364E@  имеем

                                    L 1 (n)= s=3 n j=3 s (1) ns1 s nj1 (ns1)!(sj)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaam4Caiaai2da caaIZaaabaGaamOBaaqdcqGHris5aOWaaabCaeqaleaacaWGQbGaaG ypaiaaiodaaeaacaWGZbaaniabggHiLdGccaaIOaGaeyOeI0IaaGym aiaaiMcadaahaaWcbeqaaiaad6gacqGHsislcaWGZbGaeyOeI0IaaG ymaaaakmaalaaabaGaam4CamaaCaaaleqabaGaamOBaiabgkHiTiaa dQgacqGHsislcaaIXaaaaaGcbaGaaGikaiaad6gacqGHsislcaWGZb GaeyOeI0IaaGymaiaaiMcacaaIHaGaaGikaiaadohacqGHsislcaWG QbGaaGykaiaaigcaaaGaaGOlaaaa@5BBC@

 Изменим теперь порядок суммирования в двойной сумме:

                                        L 1 (n)= j=3 n s=j n (1) ns s nj1 (ns)!(sj)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIZaaabaGaamOBaaqdcqGHris5aOWaaabCaeqaleaacaWGZbGaaG ypaiaadQgaaeaacaWGUbaaniabggHiLdGccaaIOaGaeyOeI0IaaGym aiaaiMcadaahaaWcbeqaaiaad6gacqGHsislcaWGZbaaaOWaaSaaae aacaWGZbWaaWbaaSqabeaacaWGUbGaeyOeI0IaamOAaiabgkHiTiaa igdaaaaakeaacaaIOaGaamOBaiabgkHiTiaadohacaaIPaGaaGyiai aaiIcacaWGZbGaeyOeI0IaamOAaiaaiMcacaaIHaaaaiaai6caaaa@5899@

После замены индекса суммирования во внутренней сумме p=sj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiaadohacqGHsislca WGQbaaaa@3651@ , s=p+j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadchacqGHRaWkca WGQbaaaa@3646@  и ввода биномиального коэффициента получим

                             L 1 (n)= j=3 n 1 (nj)! p=0 nj (1) njp nj p (p+j) nj1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIZaaabaGaamOBaaqdcqGHris5aOWaaSaaaeaacaaIXaaabaGaaG ikaiaad6gacqGHsislcaWGQbGaaGykaiaaigcaaaWaaabCaeqaleaa caWGWbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaamOAaaqdcqGHri s5aOGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGa eyOeI0IaamOAaiabgkHiTiaadchaaaGcdaqadaqaauaabeqaceaaae aacaWGUbGaeyOeI0IaamOAaaqaaiaadchaaaaacaGLOaGaayzkaaGa aGikaiaadchacqGHRaWkcaWGQbGaaGykamaaCaaaleqabaGaamOBai abgkHiTiaadQgacqGHsislcaaIXaaaaOGaaGOlaaaa@6071@

Используем известное комбинаторное тождество (см. [7, с. 609, формула 15])

                          p=0 m (1) p m p (p+a) q =0,q=0,1,,m1,m1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadchacaaI9aGaaG imaaqaaiaad2gaa0GaeyyeIuoakiaaiIcacqGHsislcaaIXaGaaGyk amaaCaaaleqabaGaamiCaaaakmaabmaabaqbaeqabiqaaaqaaiaad2 gaaeaacaWGWbaaaaGaayjkaiaawMcaaiaaiIcacaWGWbGaey4kaSIa amyyaiaaiMcadaahaaWcbeqaaiaadghaaaGccaaI9aGaaGimaiaaiY cacaaMf8UaamyCaiaai2dacaaIWaGaaGilaiaaigdacaaISaGaeSOj GSKaaGilaiaad2gacqGHsislcaaIXaGaaGilaiaaywW7caWGTbGaey yzImRaaGymaiaai6caaaa@57BF@

В нашем случае найдем

             L 1 (n)= 1 n + j=3 n1 (1) nj (nj)! p=0 nj (1) njp nj p (p+j) nj1 = 1 n + j=3 n1 0= 1 n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaad6ga aaGaey4kaSYaaabCaeqaleaacaWGQbGaaGypaiaaiodaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOWaaSaaaeaacaaIOaGaeyOeI0Ia aGymaiaaiMcadaahaaWcbeqaaiaad6gacqGHsislcaWGQbaaaaGcba GaaGikaiaad6gacqGHsislcaWGQbGaaGykaiaaigcaaaWaaabCaeqa leaacaWGWbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaamOAaaqdcq GHris5aOGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWG UbGaeyOeI0IaamOAaiabgkHiTiaadchaaaGcdaqadaqaauaabeqace aaaeaacaWGUbGaeyOeI0IaamOAaaqaaiaadchaaaaacaGLOaGaayzk aaGaaGikaiaadchacqGHRaWkcaWGQbGaaGykamaaCaaaleqabaGaam OBaiabgkHiTiaadQgacqGHsislcaaIXaaaaOGaaGypamaalaaabaGa aGymaaqaaiaad6gaaaGaey4kaSYaaabCaeqaleaacaWGQbGaaGypai aaiodaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aOGaaGimaiaa i2dadaWcaaqaaiaaigdaaeaacaWGUbaaaiaai6caaaa@7812@

Теорема 2 При n4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGinaaaa@3538@  верно комбинаторное тождесто

                                       i=1 n3 j=3 ni (1) i1 (ni) nj1 (i1)!(nij)! =n3. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gacqGHsislcaaIZaaaniabggHiLdGcdaaeWbqabSqa aiaadQgacaaI9aGaaG4maaqaaiaad6gacqGHsislcaWGPbaaniabgg HiLdGccaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadMga cqGHsislcaaIXaaaaOWaaSaaaeaacaaIOaGaamOBaiabgkHiTiaadM gacaaIPaWaaWbaaSqabeaacaWGUbGaeyOeI0IaamOAaiabgkHiTiaa igdaaaaakeaacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaGaaGyiai aaiIcacaWGUbGaeyOeI0IaamyAaiabgkHiTiaadQgacaaIPaGaaGyi aaaacaaI9aGaamOBaiabgkHiTiaaiodacaaMe8UaaGOlaaaa@607D@                          (2)

Proof. Обозначим левую часть тождества (2) через L 2 (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaad6gacaaIPaaaaa@35DC@ . После замены индекса суммирования во внешней сумме s=ni MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaad6gacqGHsislca WGPbaaaa@364E@ , i=ns MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaad6gacqGHsislca WGZbaaaa@364E@  имеем

                                    L 2 (n)= s=3 n1 j=3 s (1) ns1 s nj1 (ns1)!(sj)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaam4Caiaai2da caaIZaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaaqahabe WcbaGaamOAaiaai2dacaaIZaaabaGaam4CaaqdcqGHris5aOGaaGik aiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam 4CaiabgkHiTiaaigdaaaGcdaWcaaqaaiaadohadaahaaWcbeqaaiaa d6gacqGHsislcaWGQbGaeyOeI0IaaGymaaaaaOqaaiaaiIcacaWGUb GaeyOeI0Iaam4CaiabgkHiTiaaigdacaaIPaGaaGyiaiaaiIcacaWG ZbGaeyOeI0IaamOAaiaaiMcacaaIHaaaaiaai6caaaa@5D65@

Изменим теперь порядок суммирования в двойной сумме:

                                    L 2 (n)= j=3 n1 s=j n1 (1) ns1 s nj1 (ns1)!(sj)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIZaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaaqahabe WcbaGaam4Caiaai2dacaWGQbaabaGaamOBaiabgkHiTiaaigdaa0Ga eyyeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam OBaiabgkHiTiaadohacqGHsislcaaIXaaaaOWaaSaaaeaacaWGZbWa aWbaaSqabeaacaWGUbGaeyOeI0IaamOAaiabgkHiTiaaigdaaaaake aacaaIOaGaamOBaiabgkHiTiaadohacqGHsislcaaIXaGaaGykaiaa igcacaaIOaGaam4CaiabgkHiTiaadQgacaaIPaGaaGyiaaaacaaIUa aaaa@5F3A@

После замены индекса суммирования во внутренней сумме p=sj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiaadohacqGHsislca WGQbaaaa@3651@ , s=p+j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadchacqGHRaWkca WGQbaaaa@3646@  и ввода биномиального коэффициента получим

                     L 2 (n)= j=3 n1 1 (nj1)! p=0 nj1 (1) njp1 nj1 p (p+j) nj1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIZaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaalaaaba GaaGymaaqaaiaaiIcacaWGUbGaeyOeI0IaamOAaiabgkHiTiaaigda caaIPaGaaGyiaaaadaaeWbqabSqaaiaadchacaaI9aGaaGimaaqaai aad6gacqGHsislcaWGQbGaeyOeI0IaaGymaaqdcqGHris5aOGaaGik aiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam OAaiabgkHiTiaadchacqGHsislcaaIXaaaaOWaaeWaaeaafaqabeGa baaabaGaamOBaiabgkHiTiaadQgacqGHsislcaaIXaaabaGaamiCaa aaaiaawIcacaGLPaaacaaIOaGaamiCaiabgUcaRiaadQgacaaIPaWa aWbaaSqabeaacaWGUbGaeyOeI0IaamOAaiabgkHiTiaaigdaaaGcca aIUaaaaa@68BA@

Используем известное комбинаторное тождество (см. [7, с. 609, формула 16])

                                          p=0 m (1) p m p (p+a) m =( 1) m m!. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadchacaaI9aGaaG imaaqaaiaad2gaa0GaeyyeIuoakiaaiIcacqGHsislcaaIXaGaaGyk amaaCaaaleqabaGaamiCaaaakmaabmaabaqbaeqabiqaaaqaaiaad2 gaaeaacaWGWbaaaaGaayjkaiaawMcaaiaaiIcacaWGWbGaey4kaSIa amyyaiaaiMcadaahaaWcbeqaaiaad2gaaaGccaaI9aGaaGikaiabgk HiTiaaigdacaaIPaWaaWbaaSqabeaacaWGTbaaaOGaamyBaiaaigca caaIUaaaaa@4BC9@

В нашем случае найдем

                         L 2 (n)= j=3 n1 (1) nj1 (nj1)! (1) nj1 (nj1)!= j=3 n1 1=n3. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIZaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaalaaaba GaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGaeyOe I0IaamOAaiabgkHiTiaaigdaaaaakeaacaaIOaGaamOBaiabgkHiTi aadQgacqGHsislcaaIXaGaaGykaiaaigcaaaGaaGikaiabgkHiTiaa igdacaaIPaWaaWbaaSqabeaacaWGUbGaeyOeI0IaamOAaiabgkHiTi aaigdaaaGccaaIOaGaamOBaiabgkHiTiaadQgacqGHsislcaaIXaGa aGykaiaaigcacaaI9aWaaabCaeqaleaacaWGQbGaaGypaiaaiodaae aacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aOGaaGymaiaai2dacaWG UbGaeyOeI0IaaG4maiaai6caaaa@678B@

Пусть S p (n,k) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaad6gacaaISaGaam4AaiaaiMcaaaa@37C2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  нецентральные числа Стирлинга второго рода (см. [8]). Для них известна производящая функция и следующие выражения:

              n=0 S p (n,k) z n n! = 1 k! e pz ( e z 1) k , S p (n,k)= 1 k! l=0 k (1) kl k l (l+p) n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOGaam4uamaaBaaaleaacaWGWbaa beaakiaaiIcacaWGUbGaaGilaiaadUgacaaIPaWaaSaaaeaacaWG6b WaaWbaaSqabeaacaWGUbaaaaGcbaGaamOBaiaaigcaaaGaaGypamaa laaabaGaaGymaaqaaiaadUgacaaIHaaaaiaadwgadaahaaWcbeqaai aadchacaWG6baaaOGaaGikaiaadwgadaahaaWcbeqaaiaadQhaaaGc cqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4AaaaakiaaiYcaca aMf8Uaam4uamaaBaaaleaacaWGWbaabeaakiaaiIcacaWGUbGaaGil aiaadUgacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaadUgacaaIHa aaamaaqahabeWcbaGaamiBaiaai2dacaaIWaaabaGaam4AaaqdcqGH ris5aOGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRb GaeyOeI0IaamiBaaaakmaabmaabaqbaeqabiqaaaqaaiaadUgaaeaa caWGSbaaaaGaayjkaiaawMcaaiaaiIcacaWGSbGaey4kaSIaamiCai aaiMcadaahaaWcbeqaaiaad6gaaaGccaaISaaaaa@6F18@

                                      S p (n,k)=0приk>n, S p (n,n)=1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaad6gacaaISaGaam4AaiaaiMcacaaI9aGaaGimaiaaykW7 caaMc8Uaae4peiaabcebcaqG4qGaaGPaVlaaykW7caWGRbGaaGOpai aad6gacaaISaGaaGzbVlaadofadaWgaaWcbaGaamiCaaqabaGccaaI OaGaamOBaiaaiYcacaWGUbGaaGykaiaai2dacaaIXaGaaGOlaaaa@4EE8@

Лемма 1  

                                            S p (n,n1)=n p+ 1 2 (n1) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaad6gacaaISaGaamOBaiabgkHiTiaaigdacaaIPaGaaGyp aiaad6gadaqadaqaaiaadchacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaaiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaiaawIcacaGL PaaacaaIUaaaaa@44C6@

Proof. Используем метод коэффициентов (см. [6]):

             S p (n,n1)= n! (n1)! Coe f z e pz ( e z 1) n1 z n1 =nCoe f z e pz ( e z 1 z ) n1 1 z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaad6gacaaISaGaamOBaiabgkHiTiaaigdacaaIPaGaaGyp amaalaaabaGaamOBaiaaigcaaeaacaaIOaGaamOBaiabgkHiTiaaig dacaaIPaGaaGyiaaaacaWGdbGaam4BaiaadwgacaWGMbWaaSbaaSqa aiaadQhaaeqaaOGaamyzamaaCaaaleqabaGaamiCaiaadQhaaaGcca aIOaGaamyzamaaCaaaleqabaGaamOEaaaakiabgkHiTiaaigdacaaI PaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaadQhadaahaa Wcbeqaaiaad6gacqGHsislcaaIXaaaaOGaaGypaiaad6gacaWGdbGa am4BaiaadwgacaWGMbWaaSbaaSqaaiaadQhaaeqaaOGaamyzamaaCa aaleqabaGaamiCaiaadQhaaaGccaaIOaWaaSaaaeaacaWGLbWaaWba aSqabeaacaWG6baaaOGaeyOeI0IaaGymaaqaaiaadQhaaaGaaGykam aaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGcdaWcaaqaaiaaigda aeaacaWG6bWaaWbaaSqabeaacaaIYaaaaaaakiaai6caaaa@6A50@

Пусть

                                                   f(z)= e pz e z 1 z n1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadQhacaaIPaGaaG ypaiaadwgadaahaaWcbeqaaiaadchacaWG6baaaOWaaeWaaeaadaWc aaqaaiaadwgadaahaaWcbeqaaiaadQhaaaGccqGHsislcaaIXaaaba GaamOEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6gacqGHsisl caaIXaaaaOGaaGOlaaaa@42D6@

Для вычета функции F(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadQhacaaIPaaaaa@34F0@  в полюсе z=a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadggaaaa@346D@  порядка n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  известна формула (см. [5, c. 84])

                                 Coe f z F(z)= 1 (n1)! lim za d n1 d z n1 [(za ) n F(z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaam4BaiaadwgacaWGMbWaaS baaSqaaiaadQhaaeqaaOGaamOraiaaiIcacaWG6bGaaGykaiaai2da daWcaaqaaiaaigdaaeaacaaIOaGaamOBaiabgkHiTiaaigdacaaIPa GaaGyiaaaadaGfqbqabSqaaiaadQhacqGHsgIRcaWGHbaabeGcbaGa ciiBaiaacMgacaGGTbaaamaalaaabaGaamizamaaCaaaleqabaGaam OBaiabgkHiTiaaigdaaaaakeaacaWGKbGaamOEamaaCaaaleqabaGa amOBaiabgkHiTiaaigdaaaaaaOGaaG4waiaaiIcacaWG6bGaeyOeI0 IaamyyaiaaiMcadaahaaWcbeqaaiaad6gaaaGccaWGgbGaaGikaiaa dQhacaaIPaGaaGyxaiaai6caaaa@5AB2@

Функция f(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadQhacaaIPaaaaa@3510@  аналитична в нуле; по формуле для вычета в полюсе второго порядка найдем

             S p (n,n1)=nCoe f z f(z) z 2 =n lim z0 f (z)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaad6gacaaISaGaamOBaiabgkHiTiaaigdacaaIPaGaaGyp aiaad6gacaaMc8Uaam4qaiaad+gacaWGLbGaamOzamaaBaaaleaaca WG6baabeaakmaalaaabaGaamOzaiaaiIcacaWG6bGaaGykaaqaaiaa dQhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiaad6gacaaMc8+aay buaeqaleaacaWG6bGaeyOKH4QaaGimaaqabOqaaiGacYgacaGGPbGa aiyBaaaaceWGMbGbauaacaaIOaGaamOEaiaaiMcacaaI9aaaaa@552A@

                      =n lim z0 p e pz ( e z 1 z ) n1 e pz (n1)( e z 1 z ) n2 e z z( e z 1) z 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOBamaawafabeWcbaGaam OEaiabgkziUkaaicdaaeqakeaacaaMc8UaciiBaiaacMgacaGGTbaa amaadmaabaGaamiCaiaadwgadaahaaWcbeqaaiaadchacaWG6baaaO GaaGikamaalaaabaGaamyzamaaCaaaleqabaGaamOEaaaakiabgkHi TiaaigdaaeaacaWG6baaaiaaiMcadaahaaWcbeqaaiaad6gacqGHsi slcaaIXaaaaOGaamyzamaaCaaaleqabaGaamiCaiaadQhaaaGccaaI OaGaamOBaiabgkHiTiaaigdacaaIPaGaaGikamaalaaabaGaamyzam aaCaaaleqabaGaamOEaaaakiabgkHiTiaaigdaaeaacaWG6baaaiaa iMcadaahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaOWaaSaaaeaaca WGLbWaaWbaaSqabeaacaWG6baaaOGaamOEaiabgkHiTiaaiIcacaWG LbWaaWbaaSqabeaacaWG6baaaOGaeyOeI0IaaGymaiaaiMcaaeaaca WG6bWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5waiaaw2faaiaai2da aaa@6730@

                   =n[p+(n1) lim z0 z+ z 2 z 1 2 z 2 +o( z 2 ) z 2 ]=n p+ 1 2 (n1) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOBaiaaiUfacaWGWbGaey 4kaSIaaGikaiaad6gacqGHsislcaaIXaGaaGykamaawafabeWcbaGa amOEaiabgkziUkaaicdaaeqakeaacaaMc8UaciiBaiaacMgacaGGTb aaamaalaaabaGaamOEaiabgUcaRiaadQhadaahaaWcbeqaaiaaikda aaGccqGHsislcaWG6bGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaa aacaWG6bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam4BaiaaiIca caWG6bWaaWbaaSqabeaacaaIYaaaaOGaaGykaaqaaiaadQhadaahaa WcbeqaaiaaikdaaaaaaOGaaGyxaiaai2dacaWGUbWaaeWaaeaacaWG WbGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIOaGaamOBai abgkHiTiaaigdacaaIPaaacaGLOaGaayzkaaGaaGOlaaaa@6050@

Теорема 3  При n5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGynaaaa@3539@  верно комбинаторное тождество

                          i=2 n3 j=3 ni (1) i (ni) nj1 (i2)!(nij)! = 1 6 (n3)(n4)(2n1). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG Omaaqaaiaad6gacqGHsislcaaIZaaaniabggHiLdGcdaaeWbqabSqa aiaadQgacaaI9aGaaG4maaqaaiaad6gacqGHsislcaWGPbaaniabgg HiLdGccaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadMga aaGcdaWcaaqaaiaaiIcacaWGUbGaeyOeI0IaamyAaiaaiMcadaahaa Wcbeqaaiaad6gacqGHsislcaWGQbGaeyOeI0IaaGymaaaaaOqaaiaa iIcacaWGPbGaeyOeI0IaaGOmaiaaiMcacaaIHaGaaGikaiaad6gacq GHsislcaWGPbGaeyOeI0IaamOAaiaaiMcacaaIHaaaaiaai2dadaWc aaqaaiaaigdaaeaacaaI2aaaaiaaiIcacaWGUbGaeyOeI0IaaG4mai aaiMcacaaIOaGaamOBaiabgkHiTiaaisdacaaIPaGaaGikaiaaikda caWGUbGaeyOeI0IaaGymaiaaiMcacaaIUaaaaa@68F9@             (3)

Proof. Обозначим левую часть тождества (3) через L 3 (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaO GaaGikaiaad6gacaaIPaaaaa@35DD@ . После замены индекса суммирования во внешней сумме s=ni MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaad6gacqGHsislca WGPbaaaa@364E@ , i=ns MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaad6gacqGHsislca WGZbaaaa@364E@  имеем

                                     L 3 (n)= s=3 n2 j=3 s (1) ns s nj1 (ns2)!(sj)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaam4Caiaai2da caaIZaaabaGaamOBaiabgkHiTiaaikdaa0GaeyyeIuoakmaaqahabe WcbaGaamOAaiaai2dacaaIZaaabaGaam4CaaqdcqGHris5aOGaaGik aiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam 4CaaaakmaalaaabaGaam4CamaaCaaaleqabaGaamOBaiabgkHiTiaa dQgacqGHsislcaaIXaaaaaGcbaGaaGikaiaad6gacqGHsislcaWGZb GaeyOeI0IaaGOmaiaaiMcacaaIHaGaaGikaiaadohacqGHsislcaWG QbGaaGykaiaaigcaaaGaaGOlaaaa@5BC0@

Изменим теперь порядок суммирования в двойной сумме:

                                     L 3 (n)= j=3 n2 s=j n2 (1) ns s nj1 (ns2)!(sj)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIZaaabaGaamOBaiabgkHiTiaaikdaa0GaeyyeIuoakmaaqahabe WcbaGaam4Caiaai2dacaWGQbaabaGaamOBaiabgkHiTiaaikdaa0Ga eyyeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam OBaiabgkHiTiaadohaaaGcdaWcaaqaaiaadohadaahaaWcbeqaaiaa d6gacqGHsislcaWGQbGaeyOeI0IaaGymaaaaaOqaaiaaiIcacaWGUb GaeyOeI0Iaam4CaiabgkHiTiaaikdacaaIPaGaaGyiaiaaiIcacaWG ZbGaeyOeI0IaamOAaiaaiMcacaaIHaaaaiaai6caaaa@5D96@

После замены индекса суммирования во внутренней сумме p=sj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiaadohacqGHsislca WGQbaaaa@3651@ , s=p+j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadchacqGHRaWkca WGQbaaaa@3646@  получим

             L 3 (n)= j=3 n2 1 (nj2)! p=0 nj2 (1) njp2 nj2 p (p+j) nj1 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaO GaaGikaiaad6gacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIZaaabaGaamOBaiabgkHiTiaaikdaa0GaeyyeIuoakmaalaaaba GaaGymaaqaaiaaiIcacaWGUbGaeyOeI0IaamOAaiabgkHiTiaaikda caaIPaGaaGyiaaaadaaeWbqabSqaaiaadchacaaI9aGaaGimaaqaai aad6gacqGHsislcaWGQbGaeyOeI0IaaGOmaaqdcqGHris5aOGaaGik aiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam OAaiabgkHiTiaadchacqGHsislcaaIYaaaaOWaaeWaaeaafaqabeGa baaabaGaamOBaiabgkHiTiaadQgacqGHsislcaaIYaaabaGaamiCaa aaaiaawIcacaGLPaaacaaIOaGaamiCaiabgUcaRiaadQgacaaIPaWa aWbaaSqabeaacaWGUbGaeyOeI0IaamOAaiabgkHiTiaaigdaaaGcca aI9aaaaa@68CF@

                    = j=3 n2 S j (nj1,nj2)= j=3 n2 (nj1)(j+ 1 2 (nj2))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGQbGaaG ypaiaaiodaaeaacaWGUbGaeyOeI0IaaGOmaaqdcqGHris5aOGaam4u amaaBaaaleaacaWGQbaabeaakiaaiIcacaWGUbGaeyOeI0IaamOAai abgkHiTiaaigdacaaISaGaamOBaiabgkHiTiaadQgacqGHsislcaaI YaGaaGykaiaai2dadaaeWbqabSqaaiaadQgacaaI9aGaaG4maaqaai aad6gacqGHsislcaaIYaaaniabggHiLdGccaaIOaGaamOBaiabgkHi TiaadQgacqGHsislcaaIXaGaaGykaiaaiIcacaWGQbGaey4kaSYaaS aaaeaacaaIXaaabaGaaGOmaaaacaaIOaGaamOBaiabgkHiTiaadQga cqGHsislcaaIYaGaaGykaiaaiMcacaaI9aaaaa@604B@

                           = 1 6 (2 n 3 15 n 2 +31n12)= 1 6 (n3)(n4)(2n1). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OnaaaacaaIOaGaaGOmaiaad6gadaahaaWcbeqaaiaaiodaaaGccqGH sislcaaIXaGaaGynaiaad6gadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaIZaGaaGymaiaad6gacqGHsislcaaIXaGaaGOmaiaaiMcacaaI 9aWaaSaaaeaacaaIXaaabaGaaGOnaaaacaaIOaGaamOBaiabgkHiTi aaiodacaaIPaGaaGikaiaad6gacqGHsislcaaI0aGaaGykaiaaiIca caaIYaGaamOBaiabgkHiTiaaigdacaaIPaGaaGOlaaaa@51E4@

Суммирование последовательности и разложение на множители многочлена выполнено с помощью пакета программ Maple.

В качестве примера наметим ход доказательства тождества (2) с помощью формул для перечисления графов.

Обозначим через C k (n,m) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaad6gacaaISaGaamyBaiaaiMcaaaa@37AF@  число помеченных связных графов с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  вершинами, из которых k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  концевых, и m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32B3@  ребрами, а через C(n,m) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaad6gacaaISaGaam yBaiaaiMcaaaa@3689@  - число помеченных связных графов с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  вершинами и m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32B3@  ребрами. Мун (см. [9]) получил формулу

                             C k (n,m)= i=k n1 (1) ik i k n i (ni) i C(ni,mi). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaad6gacaaISaGaamyBaiaaiMcacaaI9aWaaabCaeqaleaa caWGPbGaaGypaiaadUgaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHri s5aOGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGPbGa eyOeI0Iaam4AaaaakmaabmaabaqbaeqabiqaaaqaaiaadMgaaeaaca WGRbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaad6ga aeaacaWGPbaaaaGaayjkaiaawMcaaiaaiIcacaWGUbGaeyOeI0Iaam yAaiaaiMcadaahaaWcbeqaaiaadMgaaaGccaWGdbGaaGikaiaad6ga cqGHsislcaWGPbGaaGilaiaad2gacqGHsislcaWGPbGaaGykaiaai6 caaaa@5B8B@                (4)

Унициклический граф - это связный граф с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  вершинами и n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  ребрами. Известна формула для числа C(n,n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaad6gacaaISaGaam OBaiaaiMcaaaa@368A@  помеченных унициклических графов с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  вершинами (см. [10, c. 20]):

                                              C(n,n)= 1 2 i=3 n n! (ni)! n ni1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaad6gacaaISaGaam OBaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaaeWbqa bSqaaiaadMgacaaI9aGaaG4maaqaaiaad6gaa0GaeyyeIuoakmaala aabaGaamOBaiaaigcaaeaacaaIOaGaamOBaiabgkHiTiaadMgacaaI PaGaaGyiaaaacaWGUbWaaWbaaSqabeaacaWGUbGaeyOeI0IaamyAai abgkHiTiaaigdaaaGccaaIUaaaaa@4B6E@                                  (5)

Выражение для числа C k (n,n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaad6gacaaISaGaamOBaiaaiMcaaaa@37B0@  помеченных унициклических графов с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  вершинами, из которых k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@ концевых, найдено в [1]:

                                    C k (n,n)= 1 2 n! k! p=3 nk S p (np1,npk). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaad6gacaaISaGaamOBaiaaiMcacaaI9aWaaSaaaeaacaaI XaaabaGaaGOmaaaadaWcaaqaaiaad6gacaaIHaaabaGaam4Aaiaaig caaaWaaabCaeqaleaacaWGWbGaaGypaiaaiodaaeaacaWGUbGaeyOe I0Iaam4AaaqdcqGHris5aOGaam4uamaaBaaaleaacaWGWbaabeaaki aaiIcacaWGUbGaeyOeI0IaamiCaiabgkHiTiaaigdacaaISaGaamOB aiabgkHiTiaadchacqGHsislcaWGRbGaaGykaiaai6caaaa@52E2@

Учитывая, что S p (n,n)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaad6gacaaISaGaamOBaiaaiMcacaaI9aGaaGymaaaa@3947@ , имеем

                                                   C 1 (n,n)= 1 2 n!(n3); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaISaGaamOBaiaaiMcacaaI9aWaaSaaaeaacaaI XaaabaGaaGOmaaaacaWGUbGaaGyiaiaaiIcacaWGUbGaeyOeI0IaaG 4maiaaiMcacaaI7aaaaa@402E@                                      (6)

подставляя (5) и (6) в формулу Муна (4) при k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdaaaa@3433@ , m=n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaaGypaiaad6gaaaa@346D@ , получим тождество (2).

Отметим, что аналогичным путем можно получить еще ряд тождеств типа (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3), но степень многочлена от n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  в правой части тождества быстро растет и при k=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaiodaaaa@3435@  уже равна 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI1aaaaa@3280@ .

×

About the authors

V. A. Voblyi

All-Russian Institute of Scientific and Technical Information

Author for correspondence.
Email: vitvobl@yandex.ru
Russian Federation, Moscow

References

  1. Воблый В. А. Асимптотическое перечисление помеченных связных разреженных графов с заданным числом висячих вершин Методы дискретного анализа в теории графов и схем 1985 42 3–14
  2. Воблый В. А. Об одном тождестве для многочленов Кравчука Мат. XX Междунар. семин. <<Комбинаторные конфигурации и их приложения>> Кропивницкий, 13–14 апреля 2018 г. Кропивницкий 2018 25–28
  3. Воблый В. А. О комбинаторном тождестве, связанном с перечислением графов Мат. XXI Междунар. семин. <<Комбинаторные конфигурации и их приложения>> Кропивницкий, 17–18 мая 2019 г. Кропивницкий 2019 30–31
  4. Воблый В. А. Два комбинаторных тождества, связанных с перечислением графов Итоги науки техн. Соврем. мат. прилож. Темат. обз. 208 2022 11–14
  5. Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного М. Наука 1965
  6. Леонтьев В. К. Избранные задачи комбинаторного анализа М. Изд-во МГТУ им. Н. Э. Баумана 2001
  7. Прудников А. П. и др. Интегралы и ряды. Т. 1 М. Наука 1981
  8. Koutras M. Non-central Stirling numbers and some applications Discr. Math. 1982 42 73–80
  9. Moon J. W. Connected graphs with unlabeled end-points J. Comb. Theory. 6 1969 65–66
  10. Moon J. W. Counting Labelled Trees Can. Math. Congr. 1970

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Воблый В.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».