Solutions of some systems of functional equations related to complex, double, and dual numbers

Cover Page

Cite item

Full Text

Abstract

In this paper, we solve the problem on the embedding of three two-metric, phenomenologically symmetric geometries of two sets of rank (3, 2) related to complex, double, and dual numbers, into a two-metric, phenomenologically symmetric geometry of two sets of rank (4, 2) determined by a functions of two points f = (xξ + yμ + ρ, xη + yν + τ ). The problem is reduced to the search for nondegeenerate solutions of three special systems of functional equations immediately related to complex, double, and dual numbers.

Full Text

1 Введение

Пусть M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3293@  и N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  двумерное и 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOBaaaa@3370@  =мерное дифференцируемые многообразия. Рассмотрим дифференцируемую функцию

                             f:M×N 2 ,f:i,α( f 1 (i,α), f 2 (i,α)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGOoaiaad2eacqGHxdaTca WGobGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iqaacqWFDeIudaahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVlaadA gacaaI6aGaeyykJeUaamyAaiaaiYcacqaHXoqycqGHQms8cqWIMgsy caaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGPbGaaG ilaiabeg7aHjaaiMcacaaISaGaamOzamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWGPbGaaGilaiabeg7aHjaaiMcacaaIPaaaaa@605B@

с открытой и плотной областью определения в M×N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaey41aqRaamOtaaaa@357D@ , а также функцию

  F: M n ×N 2n ,F: i 1 ,, i n ,α( f 1 ( i 1 ,α), f 2 ( i 1 ,α),, f 1 ( i n ,α), f 2 ( i n ,α)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGOoaiaad2eadaahaaWcbe qaaiaad6gaaaGccqGHxdaTcaWGobGaeyOKH46efv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaaik dacaWGUbaaaOGaaGilaiaaywW7caWGgbGaaGOoaiabgMYiHlaadMga daWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaadMgada WgaaWcbaGaamOBaaqabaGccaaISaGaeqySdeMaeyOkJeVaeSOPHeMa aGikaiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaamyAamaaBa aaleaacaaIXaaabeaakiaaiYcacqaHXoqycaaIPaGaaGilaiaaysW7 caWGMbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadMgadaWgaaWcba GaaGymaaqabaGccaaISaGaeqySdeMaaGykaiaaiYcacaaMe8UaeSOj GSKaaGilaiaaysW7caWGMbWaaWbaaSqabeaacaaIXaaaaOGaaGikai aadMgadaWgaaWcbaGaamOBaaqabaGccaaISaGaeqySdeMaaGykaiaa iYcacaaMe8UaamOzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGPb WaaSbaaSqaaiaad6gaaeqaaOGaaGilaiabeg7aHjaaiMcacaaIPaGa aGilaaaa@833B@

где i 1 ,, i n M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiablAciljaaiYcacaWGPbWaaSbaaSqaaiaad6gaaeqaaOGa eyicI4Saamytaaaa@3A9B@ , αN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHiiIZcaWGobaaaa@35B7@ . Очевидно, область определения функции F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@328C@  открыта и плотна, а сама функция дифференцируема в этой области определения. Естественным образом строятся функции

             2 f β :M 2 , f β :i( f 1 (i,β), f 2 (i,β)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOzamaaBaaaleaacqaHYo GyaeqaaOGaaGOoaiaad2eacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaki aaiYcacaaMf8UaamOzamaaBaaaleaacqaHYoGyaeqaaOGaaGOoaiaa dMgacqWIMgsycaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiI cacaWGPbGaaGilaiabek7aIjaaiMcacaaISaGaamOzamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWGPbGaaGilaiabek7aIjaaiMcacaaIPa GaaGilaaaa@5CBD@

             F j 1 ,, j n :N 2n , F j 1 ,, j n :α( f 1 ( j 1 ,α), f 2 ( j 1 ,α),, f 1 ( j n ,α), f 2 ( j n ,α)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQgadaWgaa qaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaaBaaabaGa amOBaaqabaaabeaakiaaiQdacaWGobGaeyOKH46efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaa ikdacaWGUbaaaOGaaGilaiaaywW7caWGgbWaaSbaaSqaaiaadQgada WgaaqaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaaBaaa baGaamOBaaqabaaabeaakiaaiQdacqaHXoqycqWIMgsycaaIOaGaam OzamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGQbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiabeg7aHjaaiMcacaaISaGaaGjbVlaadAgada ahaaWcbeqaaiaaikdaaaGccaaIOaGaamOAamaaBaaaleaacaaIXaaa beaakiaaiYcacqaHXoqycaaIPaGaaGilaiaaysW7cqWIMaYscaaISa GaaGjbVlaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaamOAamaa BaaaleaacaWGUbaabeaakiaaiYcacqaHXoqycaaIPaGaaGilaiaays W7caWGMbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadQgadaWgaaWc baGaamOBaaqabaGccaaISaGaeqySdeMaaGykaiaaiMcacaaISaaaaa@8193@

где j 1 ,, j n M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiablAciljaaiYcacaWGQbWaaSbaaSqaaiaad6gaaeqaaOGa eyicI4Saamytaaaa@3A9D@ , βN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGobaaaa@35B9@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ произвольные фиксированные точки. Из построений следует, что функции f β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiabek7aIbqaba aaaa@3479@  и F j 1 ,, j n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQgadaWgaa qaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaaBaaabaGa amOBaaqabaaabeaaaaa@3914@  дифференцируемы, а их области определения открыты и плотны.

Определение 1 Дифференцируемая функция f:M×N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGOoaiaad2eacqGHxdaTca WGobGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iqaacqWFDeIudaahaaWcbeqaaiaaikdaaaaaaa@44B9@  с открытой и плотной областью определения задаёт на многообразиях M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3293@  и N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@  двуметрическую феноменологически симметричную геометрию двух множеств (ДФС ГДМ) ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@ , где n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE3@ , если выполняются следующие аксиомы:

Функции f β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiabek7aIbqaba aaaa@3479@  и F j 1 ,, j n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabgMYiHlaadQ gadaWgaaqaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaa BaaabaGaamOBaaqabaGaeyOkJepabeaaaaa@3C97@  являются локальными диффеоморфизмами для плотных подмножеств точек из областей определения.

Для плотного множества точек i 1 , i 2 ,, i n+1 , α 1 , α 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWGPbWaaSbaaSqaaiaaig daaeqaaOGaaGilaiaadMgadaWgaaWcbaGaaGOmaaqabaGccaaISaGa eSOjGSKaaGilaiaadMgadaWgaaWcbaGaamOBaiabgUcaRiaaigdaae qaaOGaaGilaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH XoqydaWgaaWcbaGaaGOmaaqabaGccqGHQms8aaa@4688@  в M n+1 × N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaWbaaSqabeaacaWGUbGaey 4kaSIaaGymaaaakiabgEna0kaad6eadaahaaWcbeqaaiaaikdaaaaa aa@392D@  все 4(n+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGikaiaad6gacqGHRaWkca aIXaGaaGykaaaa@3674@  значений функции f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32AC@  связаны уравнением

                         Φ( f 1 ( i 1 , α 1 ), f 2 ( i 1 , α 1 ),, f 1 ( i n+1 , α 2 ), f 2 ( i n+1 , α 2 ))=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamOzamaaCaaale qabaGaaGymaaaakiaaiIcacaWGPbWaaSbaaSqaaiaaigdaaeqaaOGa aGilaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiMcacaaISaGaam OzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGPbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiM cacaaISaGaaGjbVlablAciljaaiYcacaWGMbWaaWbaaSqabeaacaaI XaaaaOGaaGikaiaadMgadaWgaaWcbaGaamOBaiabgUcaRiaaigdaae qaaOGaaGilaiabeg7aHnaaBaaaleaacaaIYaaabeaakiaaiMcacaaI SaGaamOzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGPbWaaSbaaS qaaiaad6gacqGHRaWkcaaIXaaabeaakiaaiYcacqaHXoqydaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGykaiaai2dacaaIWaGaaGilaaaa@61A8@

где Φ=( Φ 1 , Φ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaI9aGaaGikaiabfA6agn aaCaaaleqabaGaaGymaaaakiaaiYcacqqHMoGrdaahaaWcbeqaaiaa ikdaaaGccaaIPaaaaa@3AF6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  двухкомпонентная функция 4(n+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGikaiaad6gacqGHRaWkca aIXaGaaGykaaaa@3674@  переменных с rankΦ=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaamyyaiaad6gacaWGRbGaaG PaVlabfA6agjaai2dacaaIYaaaaa@3A09@ .

В работах [1, 3, 6, 7] приведена полная классификация ДФС ГДМ ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@  с точностью до замены координат в многообразиях и масштабного преобразования.

Рассмотрим 2(n1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaaGikaiaad6gacqGHsislca aIXaGaaGykaaaa@367D@  -мерное дифференцируемое многообразие N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGobGbauaaaaa@32A0@  и двумерное дифференцируемое многообразие L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@3292@ . Пусть

                                         π 1 : N ×L N , π 2 : N ×LL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHapaCdaWgaaWcbaGaaGymaaqaba GccaaI6aGabmOtayaafaGaey41aqRaamitaiabgkziUkqad6eagaqb aiaaiYcacaaMf8UaeqiWda3aaSbaaSqaaiaaikdaaeqaaOGaaGOoai qad6eagaqbaiabgEna0kaadYeacqGHsgIRcaWGmbaaaa@4802@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  проекции. Определим проекции

                                  p 1 :M×NM, p 1 :i,αi p 2 :M×NN, p 2 :i,αα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaacaWGWbWaaS baaSqaaiaaigdaaeqaaOGaaGOoaiaad2eacqGHxdaTcaWGobGaeyOK H4QaamytaiaaiYcaaeaacaaMf8oabaGaamiCamaaBaaaleaacaaIXa aabeaakiaaiQdacqGHPms4caWGPbGaaGilaiabeg7aHjabgQYiXlab lAAiHjaadMgaaeaaaeaacaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaG Ooaiaad2eacqGHxdaTcaWGobGaeyOKH4QaamOtaiaaiYcaaeaacaaM f8oabaGaamiCamaaBaaaleaacaaIYaaabeaakiaaiQdacqGHPms4ca WGPbGaaGilaiabeg7aHjabgQYiXlablAAiHjabeg7aHjaai6caaaaa aa@6242@

Пусть существует дифференцируемое отображение h:N N ×L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGOoaiaad6eacqGHsgIRce WGobGbauaacqGHxdaTcaWGmbaaaa@39F9@ , в некоторой окрестности произвольной точки из N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@  задающее диффеоморфизм на некоторую окрестность из N ×L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGobGbauaacqGHxdaTcaWGmbaaaa@3588@ , а также функция g:M× N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGOoaiaad2eacqGHxdaTce WGobGbauaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@44C6@ , определяющая ДФС ГДМ ранга (n,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiaaiYcacaaIYaGaaG ykaaaa@358B@ , причём

                                       f=χ g( p 1 , π 1 (h( p 2 ))), π 2 (h( p 2 )) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiabeE8aJnaabmaaba Gaam4zaiaaiIcacaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiab ec8aWnaaBaaaleaacaaIXaaabeaakiaaiIcacaWGObGaaGikaiaadc hadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGykaiaaiMcacaaISaGa eqiWda3aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIgacaaIOaGaam iCamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIPaaacaGLOaGaayzk aaGaaGilaaaa@4DA5@

где χ: 2 ×L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaI6aWefv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaa ikdaaaGccqGHxdaTcaWGmbGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca aIYaaaaaaa@46B9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторая дифференцируемая функция во всех точках своей открытой и плотной области определения.

Определение 2. 1 Будем говорить, что ДФС ГДМ ранга (n,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiaaiYcacaaIYaGaaG ykaaaa@358B@ , задаваемая функцией g:M× N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGOoaiaad2eacqGHxdaTce WGobGbauaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@44C6@ , вложена в ДФС ГДМ ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@  с функцией f:M×N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGOoaiaad2eacqGHxdaTca WGobGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iqaacqWFDeIudaahaaWcbeqaaiaaikdaaaaaaa@44B9@ , причём N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@  локально диффеоморфно N ×L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGobGbauaacqGHxdaTcaWGmbaaaa@3588@ , если выполняется функциональное соотношение

                     f(λ(i),τ(α))=χ(g(i, π 1 (h( p 2 (i,α)))), π 2 (h( p 2 (i,α)))), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeU7aSjaaiIcaca WGPbGaaGykaiaaiYcacqaHepaDcaaIOaGaeqySdeMaaGykaiaaiMca caaI9aGaeq4XdmMaaGikaiaadEgacaaIOaGaamyAaiaaiYcacqaHap aCdaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiAaiaaiIcacaWGWbWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiabgMYiHlaadMgacaaISaGaeq ySdeMaeyOkJeVaaGykaiaaiMcacaaIPaGaaGykaiaaiYcacaaMe8Ua eqiWda3aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIgacaaIOaGaam iCamaaBaaaleaacaaIYaaabeaakiaaiIcacqGHPms4caWGPbGaaGil aiabeg7aHjabgQYiXlaaiMcacaaIPaGaaGykaiaaiMcacaaISaaaaa@6957@

где λ:MM MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcaaI6aGaamytaiabgkziUk aad2eaaaa@37CA@  и τ:NN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI6aGaamOtaiabgkziUk aad6eaaaa@37DD@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ локальные диффеоморфизмы.

В [3] доказано, что в каждую ДФС ГДМ ранга (n+2,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaikdaca aISaGaaGOmaiaaiMcaaaa@3729@  вложена по крайней мере одна из ДФС ГДМ ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@ , где n=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacaaIZaaaaa@371B@ .

В данной статье ставится задача о нахождении всех возможных вложений ДФС ГДМ ранга (3,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaG4maiaaiYcacaaIYaGaaG ykaaaa@3555@  с функциями

    g=(xξ+μ,xη+yξ+ν),g=(xξ+μ,yη+ν),g=(xξyη+μ,xη+yξ+ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGypaiaaiIcacaWG4bGaeq OVdGNaey4kaSIaeqiVd0MaaGilaiaadIhacqaH3oaAcqGHRaWkcaWG 5bGaeqOVdGNaey4kaSIaeqyVd4MaaGykaiaaiYcacaaMf8Uaam4zai aai2dacaaIOaGaamiEaiabe67a4jabgUcaRiabeY7aTjaaiYcacaWG 5bGaeq4TdGMaey4kaSIaeqyVd4MaaGykaiaaiYcacaaMf8Uaam4zai aai2dacaaIOaGaamiEaiabe67a4jabgkHiTiaadMhacqaH3oaAcqGH RaWkcqaH8oqBcaaISaGaamiEaiabeE7aOjabgUcaRiaadMhacqaH+o aEcqGHRaWkcqaH9oGBcaaIPaaaaa@6C62@

в ДФС ГДМ ранга (4,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGinaiaaiYcacaaIYaGaaG ykaaaa@3556@  с функцией f=(xξ+yμ+ρ,xη+yν+τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaaiIcacaWG4bGaeq OVdGNaey4kaSIaamyEaiabeY7aTjabgUcaRiabeg8aYjaaiYcacaWG 4bGaeq4TdGMaey4kaSIaamyEaiabe27aUjabgUcaRiabes8a0jaaiM caaaa@476E@ . Решение этой задачи сводится к решению особых систем функциональных уравнений. Данная задача является продолжением задачи вложения ДФС ГДМ ранга (2,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGOmaiaaiYcacaaIYaGaaG ykaaaa@3554@  с функцией g=(x+ξ,x+η) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGypaiaaiIcacaWG4bGaey 4kaSIaeqOVdGNaaGilaiaadIhacqGHRaWkcqaH3oaAcaaIPaaaaa@3CBC@  в ДФС ГДМ ранга (3,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaG4maiaaiYcacaaIYaGaaG ykaaaa@3555@  с функцией f=(xξ+yμ,xη+yν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaaiIcacaWG4bGaeq OVdGNaey4kaSIaamyEaiabeY7aTjaaiYcacaWG4bGaeq4TdGMaey4k aSIaamyEaiabe27aUjaaiMcaaaa@4225@ , опубликованной в [5].

2 Постановка задачи

Согласно определению 2, сформулированная выше задача сводится к решению трёх систем функциональных уравнений

          x¯ξ¯+y¯μ¯+ρ¯χ1xξ+μ,xη+yξ+ν,ρ,τ,x¯η¯+y¯ν¯+τ¯χ2xξ+μ,xη+yξ+ν,ρ,τ;

          x¯ξ¯+y¯μ¯+ρ¯χ1xξ+μ,yη+ν,ρ,τ,x¯η¯+y¯ν¯+τ¯χ2xξ+μ,yη+ν,ρ,τ;               (1)

          x¯ξ¯+y¯μ¯+ρ¯χ1xξyη+μ,xη+yξ+ν,ρ,τ,x¯η¯+y¯ν¯+τ¯χ2xξyη+μ,xη+yξ+ν,ρ,τ,

 где x ¯ = x ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGabmiEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38C8@ , y ¯ = y ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaI9aGabmyEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38CA@ ,

             ξ ¯ = ξ ¯ (ξ,η,μ,ν,ρ,τ), η ¯ = η ¯ (ξ,η,μ,ν,ρ,τ), μ ¯ = μ ¯ (ξ,η,μ,ν,ρ,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqeaiaai2dacuaH+oaEga qeaiaaiIcacqaH+oaEcaaISaGaeq4TdGMaaGilaiabeY7aTjaaiYca cqaH9oGBcaaISaGaeqyWdiNaaGilaiabes8a0jaaiMcacaaISaGaaG zbVlqbeE7aOzaaraGaaGypaiqbeE7aOzaaraGaaGikaiabe67a4jaa iYcacqaH3oaAcaaISaGaeqiVd0MaaGilaiabe27aUjaaiYcacqaHbp GCcaaISaGaeqiXdqNaaGykaiaaiYcacaaMf8UafqiVd0MbaebacaaI 9aGafqiVd0MbaebacaaIOaGaeqOVdGNaaGilaiabeE7aOjaaiYcacq aH8oqBcaaISaGaeqyVd4MaaGilaiabeg8aYjaaiYcacqaHepaDcaaI PaGaaGilaaaa@722D@

             ν ¯ = ν ¯ (ξ,η,μ,ν,ρ,τ), ρ ¯ = ρ ¯ (ξ,η,μ,ν,ρ,τ), τ ¯ = τ ¯ (ξ,η,μ,ν,ρ,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH9oGBgaqeaiaai2dacuaH9oGBga qeaiaaiIcacqaH+oaEcaaISaGaeq4TdGMaaGilaiabeY7aTjaaiYca cqaH9oGBcaaISaGaeqyWdiNaaGilaiabes8a0jaaiMcacaaISaGaaG zbVlqbeg8aYzaaraGaaGypaiqbeg8aYzaaraGaaGikaiabe67a4jaa iYcacqaH3oaAcaaISaGaeqiVd0MaaGilaiabe27aUjaaiYcacqaHbp GCcaaISaGaeqiXdqNaaGykaiaaiYcacaaMf8UafqiXdqNbaebacaaI 9aGafqiXdqNbaebacaaIOaGaeqOVdGNaaGilaiabeE7aOjaaiYcacq aH8oqBcaaISaGaeqyVd4MaaGilaiabeg8aYjaaiYcacqaHepaDcaaI PaGaaGilaaaa@725D@

  χ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaigdaaa aaaa@3460@ , χ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaikdaaa aaaa@3461@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  дифференцируемые функции.

Авторы данной работы ранее изучалась связь двуметрических феноменологически симметричных геометрий двух множеств с гиперкомплексными числами (см. [4, 8, 9]). Анализируя уравнения (1), находим их связь с двумерными гиперкомплексными числами, которых всего три типа: комплексные числа, дуальные и двойные. Напомним, что комплексные, дуальные и двойные числа можно задать так: z=x+Iy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadIhacqGHRaWkca WGjbGaamyEaaaa@3732@ , где I 2 =1,0,1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaWbaaSqabeaacaaIYaaaaO GaaGypaiabgkHiTiaaigdacaaISaGaaGimaiaaiYcacaaIXaaaaa@38D2@  соответственно, z ¯ =xIy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG6bGbaebacaaI9aGaamiEaiabgk HiTiaadMeacaWG5baaaa@3755@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  сопряжённое число. Операции сложения и умножения определяются как и для комплексных чисел. Хорошо известно, что множество комплексных чисел образует поле, а множества дуальных и двойных чисел MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  ассоциативные и коммутативные алгебры над полем MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risbaa@3C78@  с единицей и частичным делением. Поэтому правые части уравнений (1) можно записать в виде

                                            χ 1 (w, w ¯ ,ρ,τ), χ 2 (w, w ¯ ,ρ,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaigdaaa GccaaIOaGaam4DaiaaiYcaceWG3bGbaebacaaISaGaeqyWdiNaaGil aiabes8a0jaaiMcacaaISaGaaGzbVlabeE8aJnaaCaaaleqabaGaaG OmaaaakiaaiIcacaWG3bGaaGilaiqadEhagaqeaiaaiYcacqaHbpGC caaISaGaeqiXdqNaaGykaiaaiYcaaaa@4C46@

где w=(ξ+Iη)(x+Iy)+(μ+Iν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaiIcacqaH+oaEcq GHRaWkcaWGjbGaeq4TdGMaaGykaiaaiIcacaWG4bGaey4kaSIaamys aiaadMhacaaIPaGaey4kaSIaaGikaiabeY7aTjabgUcaRiaadMeacq aH9oGBcaaIPaaaaa@467D@ . Тогда для первой и третьей систем из (1): u=Re(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadkfacaWGLbGaaG ikaiaadEhacaaIPaaaaa@37A4@ , v=Im(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMeacaWGTbGaaG ikaiaadEhacaaIPaaaaa@37A4@ , а для второй системы линейные комбинации действительной и мнимой частей Re(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaaiIcacaWG3bGaaG ykaaaa@35E3@ , Im(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamyBaiaaiIcacaWG3bGaaG ykaaaa@35E2@  двойного числа w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  дают выражения

                                              u= x ξ + μ ,v= y η + ν . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiqadIhagaqbaiqbe6 7a4zaafaGaey4kaSIafqiVd0MbauaacaaISaGaaGzbVlaadAhacaaI 9aGabmyEayaafaGafq4TdGMbauaacqGHRaWkcuaH9oGBgaqbaiaai6 caaaa@4324@

Заметим, что u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  и v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ это первый и второй аргументы правых частей в системе (1).

Вложение оказывается возможным, если система (1) имеет хотя бы одно невырожденное решение, удовлетворяющее следующим двум условиям (определение 2):

                                 Δ= ( x ¯ , y ¯ ) (x,y) 0,= ( ξ ¯ , η ¯ , μ ¯ , ν ¯ , ρ ¯ , τ ¯ ) (ξ,η,μ,ν,ρ,τ) 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaI9aWaaSaaaeaacqGHci ITcaaIOaGabmiEayaaraGaaGilaiqadMhagaqeaiaaiMcaaeaacqGH ciITcaaIOaGaamiEaiaaiYcacaWG5bGaaGykaaaacqGHGjsUcaaIWa GaaGilaiaaywW7rqqr1ngBPrgifHhDYfgaiqaacqWFHwYvcaaI9aWa aSaaaeaacqGHciITcaaIOaGafqOVdGNbaebacaaISaGafq4TdGMbae bacaaISaGafqiVd0MbaebacaaISaGafqyVd4MbaebacaaISaGafqyW diNbaebacaaISaGafqiXdqNbaebacaaIPaaabaGaeyOaIyRaaGikai abe67a4jaaiYcacqaH3oaAcaaISaGaeqiVd0MaaGilaiabe27aUjaa iYcacqaHbpGCcaaISaGaeqiXdqNaaGykaaaacqGHGjsUcaaIWaGaaG Olaaaa@703E@                                       (2)

 Из второго неравенства в данной системе вытекает

                               ξ ¯ ν ¯ η ¯ μ ¯ 0, ξ ¯ 0, η ¯ 0, μ ¯ 0, ν ¯ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqeaiqbe27aUzaaraGaey OeI0Iafq4TdGMbaebacuaH8oqBgaqeaiabgcMi5kaaicdacaaISaGa aGzbVlqbe67a4zaaraGaeyiyIKRaaGimaiaaiYcacaaMf8Uafq4TdG MbaebacqGHGjsUcaaIWaGaaGilaiaaywW7cuaH8oqBgaqeaiabgcMi 5kaaicdacaaISaGaaGzbVlqbe27aUzaaraGaeyiyIKRaaGimaiaai6 caaaa@5775@

Основной целью настоящей работы является определение общего невырожденного решения системы (1) или доказательство того, что решения не существует.

Дифференцируя уравнения из (1) по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , затем их комбинируем, чтобы справа исчезли производные функций χ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaigdaaa aaaa@3460@  и χ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaikdaaa aaaa@3461@  по их первому и второму аргументам, после чего фиксируя переменные ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@3381@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ , во всех трёх случаях получаем систему дифференциальных уравнений на функции x ¯ = x ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGabmiEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38C8@ , y ¯ = y ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaI9aGabmyEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38CA@ :

                                   x ¯ x y ¯ x = a b c d x ¯ y ¯ + α γ = A ¯ x ¯ y ¯ + α γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebadaWgaaWcbaGaamiEaaqabaaakeaaceWG5bGbaebadaWgaaWc baGaamiEaaqabaaaaaGccaGLOaGaayzkaaGaaGypamaabmaabaqbae qabiGaaaqaaiaadggaaeaacaWGIbaabaGaam4yaaqaaiaadsgaaaaa caGLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGabmiEayaaraaaba GabmyEayaaraaaaaGaayjkaiaawMcaaiabgUcaRmaabmaabaqbaeqa biqaaaqaaiabeg7aHbqaaiabeo7aNbaaaiaawIcacaGLPaaacaaI9a GabmyqayaaraWaaeWaaeaafaqabeGabaaabaGabmiEayaaraaabaGa bmyEayaaraaaaaGaayjkaiaawMcaaiabgUcaRmaabmaabaqbaeqabi qaaaqaaiabeg7aHbqaaiabeo7aNbaaaiaawIcacaGLPaaacaaIUaaa aa@5341@                                          (3)

Произведём допустимое структурой функциональных уравнений систем (1) преобразование

                                          x ¯ ' y ¯ ' =U x ¯ y ¯ x ¯ y ¯ = U 1 x ¯ ' y ¯ ' , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebacaaINaaabaGabmyEayaaraGaaG4jaaaaaiaawIcacaGLPaaa caaI9aGaamyvamaabmaabaqbaeqabiqaaaqaaiqadIhagaqeaaqaai qadMhagaqeaaaaaiaawIcacaGLPaaacaaMe8UaeyO0H49aaeWaaeaa faqabeGabaaabaGabmiEayaaraaabaGabmyEayaaraaaaaGaayjkai aawMcaaiaai2dacaWGvbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa aeWaaeaafaqabeGabaaabaGabmiEayaaraGaaG4jaaqaaiqadMhaga qeaiaaiEcaaaaacaGLOaGaayzkaaGaaGilaaaa@4D4A@

          x ¯ ' x y ¯ ' x =U x ¯ x y ¯ x =UA x ¯ y ¯ +U α γ =UA U 1 x ¯ ' y ¯ ' +U α γ = A x ¯ ' y ¯ ' + α γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebacaaINaWaaSbaaSqaaiaadIhaaeqaaaGcbaGabmyEayaaraGa aG4jamaaBaaaleaacaWG4baabeaaaaaakiaawIcacaGLPaaacaaI9a GaamyvamaabmaabaqbaeqabiqaaaqaaiqadIhagaqeamaaBaaaleaa caWG4baabeaaaOqaaiqadMhagaqeamaaBaaaleaacaWG4baabeaaaa aakiaawIcacaGLPaaacaaI9aGaamyvaiaadgeadaqadaqaauaabeqa ceaaaeaaceWG4bGbaebaaeaaceWG5bGbaebaaaaacaGLOaGaayzkaa Gaey4kaSIaamyvamaabmaabaqbaeqabiqaaaqaaiabeg7aHbqaaiab eo7aNbaaaiaawIcacaGLPaaacaaI9aGaamyvaiaadgeacaWGvbWaaW baaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaafaqabeGabaaabaGa bmiEayaaraGaaG4jaaqaaiqadMhagaqeaiaaiEcaaaaacaGLOaGaay zkaaGaey4kaSIaamyvamaabmaabaqbaeqabiqaaaqaaiabeg7aHbqa aiabeo7aNbaaaiaawIcacaGLPaaacaaI9aGabmyqayaafaWaaeWaae aafaqabeGabaaabaGabmiEayaaraGaaG4jaaqaaiqadMhagaqeaiaa iEcaaaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaafaqabeGabaaaba GafqySdeMbauaaaeaacuaHZoWzgaqbaaaaaiaawIcacaGLPaaaaaa@6B3F@

с невырожденной матрицей U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@  второго порядка. Система дифференциальных уравнений (3) в прежних обозначениях принимает следующий вид:

                                                x ¯ x y ¯ x =UA U 1 x ¯ y ¯ + α γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebadaWgaaWcbaGaamiEaaqabaaakeaaceWG5bGbaebadaWgaaWc baGaamiEaaqabaaaaaGccaGLOaGaayzkaaGaaGypaiaadwfacaWGbb GaamyvamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaqbaeqa biqaaaqaaiqadIhagaqeaaqaaiqadMhagaqeaaaaaiaawIcacaGLPa aacqGHRaWkdaqadaqaauaabeqaceaaaeaacqaHXoqyaeaacqaHZoWz aaaacaGLOaGaayzkaaGaaGOlaaaa@473F@

Хорошо известно (см. [2, с. 485]), что ненулевая матрица A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  второго порядка с вещественными элементами преобразованием AUA U 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaeyOKH4Qaamyvaiaadgeaca WGvbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@38C3@  может быть приведена к одной их пяти вещественных форм:

             1) 0 0 0 0 ,2) a 0 0 a ,3) a 0 1 a ,4) a 0 0 d ,5)[r]abba, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGykaiaaysW7caaMe8+aae WaaeaafaqabeGacaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaaaaiaawIcacaGLPaaacaaISaGaaGzbVlaaikdacaaIPaGaaG jbVlaaysW7daqadaqaauaabeqaciaaaeaacaWGHbaabaGaaGimaaqa aiaaicdaaeaacaWGHbaaaaGaayjkaiaawMcaaiaaiYcacaaMf8UaaG 4maiaaiMcacaaMe8UaaGjbVpaabmaabaqbaeqabiGaaaqaaiaadgga aeaacaaIWaaabaGaaGymaaqaaiaadggaaaaacaGLOaGaayzkaaGaaG ilaiaaywW7caaI0aGaaGykaiaaysW7caaMe8+aaeWaaeaafaqabeGa caaabaGaamyyaaqaaiaaicdaaeaacaaIWaaabaGaamizaaaaaiaawI cacaGLPaaacaaISaGaaGzbVlaaiwdacaaIPaGaaGjbVlaaysW7caaI BbGaamOCaiaai2facaWGHbGaamOyaiabgkHiTiaadkgacaWGHbGaaG ilaaaa@6C93@                   (4)

где в том же порядке: 2) a0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyiyIKRaaGimaaaa@3528@ , 3) a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A7@  любое, 4) ad MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyiyIKRaamizaaaa@3557@ , 5) b0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaeyiyIKRaaGimaaaa@3529@ . Решения системы уравнений (3), связанные с формулами (4), будут следующими:

             1) x ¯ =αx+ x ¯ (y), y ¯ =γx+ y ¯ (y), α 2 + γ 2 0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGykaiaaywW7ceWG4bGbae bacaaI9aGaeqySdeMaamiEaiabgUcaRiqadIhagaqeaiaaiIcacaWG 5bGaaGykaiaaiYcacaaMf8UabmyEayaaraGaaGypaiabeo7aNjaadI hacqGHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacaaISaGaaGzb Vlabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeo7aNnaaCa aaleqabaGaaGOmaaaakiabgcMi5kaaicdacaaI7aaaaa@5447@                                                   (5)

             2) x ¯ = x ¯ (y) e ax α a , y ¯ = y ¯ (y) e ax γ a ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaaGykaiaaywW7ceWG4bGbae bacaaI9aGabmiEayaaraGaaGikaiaadMhacaaIPaGaamyzamaaCaaa leqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiabeg7aHbqaai aadggaaaGaaGilaiaaywW7ceWG5bGbaebacaaI9aGabmyEayaaraGa aGikaiaadMhacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaa GccqGHsisldaWcaaqaaiabeo7aNbqaaiaadggaaaGaaG4oaaaa@4F85@                                                                  (6)

             3.1) x ¯ = x ¯ (y) e ax α a , y ¯ =( x ¯ (y)x+ y ¯ (y)) e ax γ a + α a 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaaGOlaiaaigdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaacaaISaGaaGzbVlqadMhagaqeaiaai2da caaIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRi qadMhagaqeaiaaiIcacaWG5bGaaGykaiaaiMcacaWGLbWaaWbaaSqa beaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaam yyaaaacqGHRaWkdaWcaaqaaiabeg7aHbqaaiaadggadaahaaWcbeqa aiaaikdaaaaaaOGaaG4oaaaa@5C1F@                                       (7)

             3.2) x ¯ = x ¯ (y)+αx, y ¯ = α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaaGOlaiaaikdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca cqGHRaWkcqaHXoqycaWG4bGaaGilaiaaywW7ceWG5bGbaebacaaI9a WaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaG ikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG 5bGaaGykaiaaiUdaaaa@557E@                                              (8)

             4.1) x ¯ = x ¯ (y) e ax α a , y ¯ = y ¯ (y) e dx γ a ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGOlaiaaigdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaacaaISaGaaGzbVlqadMhagaqeaiaai2da ceWG5bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaaca WGKbGaamiEaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaa caaI7aaaaa@50FD@                                                               (9)

             4.2) x ¯ = x ¯ (y) e ax α a , y ¯ =γx+ y ¯ (y); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGOlaiaaikdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaacaaISaGaaGzbVlqadMhagaqeaiaai2da cqaHZoWzcaWG4bGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPa GaaG4oaaaa@4DF3@                                                                (10)

             4.3) x ¯ =αx+ x ¯ (y), y ¯ = y ¯ (y) e dx γ a ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGOlaiaaiodacaaIPaGaaG zbVlqadIhagaqeaiaai2dacqaHXoqycaWG4bGaey4kaSIabmiEayaa raGaaGikaiaadMhacaaIPaGaaGilaiaaywW7ceWG5bGbaebacaaI9a GabmyEayaaraGaaGikaiaadMhacaaIPaGaamyzamaaCaaaleqabaGa amizaiaadIhaaaGccqGHsisldaWcaaqaaiabeo7aNbqaaiaadggaaa GaaG4oaaaa@4DF7@                                                                (11)

             5) x ¯ =( x ¯ (y)sinbx+ y ¯ (y)cosbx) e ax aαbβ a 2 + b 2 , y ¯ =( x ¯ (y)cosbx y ¯ (y)sinbx) e ax aβ+bα a 2 + b 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI1aGaaGykaiaaywW7daGabaqaau aabaqaciaaaeaaaeaaceWG4bGbaebacaaI9aGaaGikaiqadIhagaqe aiaaiIcacaWG5bGaaGykaiGacohacaGGPbGaaiOBaiaadkgacaWG4b Gaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGaci4yaiaac+ga caGGZbGaamOyaiaadIhacaaIPaGaamyzamaaCaaaleqabaGaamyyai aadIhaaaGccqGHsisldaWcaaqaaiaadggacqaHXoqycqGHsislcaWG IbGaeqOSdigabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aadkgadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaqaaaqaaiqadMha gaqeaiaai2dacaaIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGaci 4yaiaac+gacaGGZbGaamOyaiaadIhacqGHsislceWG5bGbaebacaaI OaGaamyEaiaaiMcaciGGZbGaaiyAaiaac6gacaWGIbGaamiEaiaaiM cacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaa baGaamyyaiabek7aIjabgUcaRiaadkgacqaHXoqyaeaacaWGHbWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaamOyamaaCaaaleqabaGaaGOm aaaaaaGccaaIUaaaaaGaay5Eaaaaaa@7D87@                                           (12)

Введём матричные обозначения, которые будут использоваться в последующих решениях:

            Ξ ¯ = ξ ¯ μ ¯ η ¯ ν ¯ , Ξ ˜ = ξ ˜ μ ˜ η ˜ ν ˜ ,Ω= a 11 a 12 a 21 a 22 =const,Λ= α β γ δ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaiaai2dadaqadaqaau aabeqaciaaaeaacuaH+oaEgaqeaaqaaiqbeY7aTzaaraaabaGafq4T dGMbaebaaeaacuaH9oGBgaqeaaaaaiaawIcacaGLPaaacaaISaGaaG zbVlqbf65ayzaaiaGaaGypamaabmaabaqbaeqabiGaaaqaaiqbe67a 4zaaiaaabaGafqiVd0MbaGaaaeaacuaH3oaAgaacaaqaaiqbe27aUz aaiaaaaaGaayjkaiaawMcaaiaaiYcacaaMf8UaeuyQdCLaaGypamaa bmaabaqbaeqabiGaaaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaae qaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdacaaIXaaabeaaaOqaaiaadggadaWgaaWcba GaaGOmaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaai2dacaWGJbGa am4Baiaad6gacaWGZbGaamiDaiaaiYcacaaMf8Uaeu4MdWKaaGypam aabmaabaqbaeqabiGaaaqaaiabeg7aHbqaaiabek7aIbqaaiabeo7a Nbqaaiabes7aKbaaaiaawIcacaGLPaaacaaISaaaaa@6DAA@

        ϒ 0 = ξ 0 η ξ , ϒ 1 = ξ 0 0 η , ϒ 1 = ξ η η ξ , A 1 = a 1 a 2 , B 1 = b 1 b 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaaGimaaqaba GccaaI9aWaaeWaaeaafaqabeGacaaabaGaeqOVdGhabaGaaGimaaqa aiabeE7aObqaaiabe67a4baaaiaawIcacaGLPaaacaaISaGaaGzbVl abfk9aHoaaBaaaleaacaaIXaaabeaakiaai2dadaqadaqaauaabeqa ciaaaeaacqaH+oaEaeaacaaIWaaabaGaaGimaaqaaiabeE7aObaaai aawIcacaGLPaaacaaISaGaaGzbVlabfk9aHoaaBaaaleaacqGHsisl caaIXaaabeaakiaai2dadaqadaqaauaabeqaciaaaeaacqaH+oaEae aacqGHsislcqaH3oaAaeaacqaH3oaAaeaacqaH+oaEaaaacaGLOaGa ayzkaaGaaGilaiaaywW7caWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaG ypamaabmaabaqbaeqabiqaaaqaaiaadggadaWgaaWcbaGaaGymaaqa baaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawM caaiaaiYcacaaMf8UaamOqamaaBaaaleaacaaIXaaabeaakiaai2da daqadaqaauaabeqaceaaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaa GcbaGaamOyamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaa caaISaGaaGzbVdaa@701A@

           R= ρ τ , R ¯ = ρ ¯ τ ¯ , R ˜ = ρ ˜ τ ˜ ,X= x y , X ¯ = x ¯ y ¯ ,χ= χ 1 χ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaaGypamaabmaabaqbaeqabi qaaaqaaiabeg8aYbqaaiabes8a0baaaiaawIcacaGLPaaacaaISaGa aGzbVlqadkfagaqeaiaai2dadaqadaqaauaabeqaceaaaeaacuaHbp GCgaqeaaqaaiqbes8a0zaaraaaaaGaayjkaiaawMcaaiaaiYcacaaM f8UabmOuayaaiaGaaGypamaabmaabaqbaeqabiqaaaqaaiqbeg8aYz aaiaaabaGafqiXdqNbaGaaaaaacaGLOaGaayzkaaGaaGilaiaaywW7 caWGybGaaGypamaabmaabaqbaeqabiqaaaqaaiaadIhaaeaacaWG5b aaaaGaayjkaiaawMcaaiaaiYcacaaMf8UabmiwayaaraGaaGypamaa bmaabaqbaeqabiqaaaqaaiqadIhagaqeaaqaaiqadMhagaqeaaaaai aawIcacaGLPaaacaaISaGaaGzbVlabeE8aJjaai2dadaqadaqaauaa beqaceaaaeaacqaHhpWydaahaaWcbeqaaiaaigdaaaaakeaacqaHhp WydaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaGilaiaa ywW7aaa@6812@

причем матрицы Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@ , Ξ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacaaaa@3354@ , Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@ , Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvaaa@334F@  невырожденные, a ij = a ij (ρ,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaai2dacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa iIcacqaHbpGCcaaISaGaeqiXdqNaaGykaaaa@3E1A@ , b i = b i (ρ,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaeqyWdiNa aGilaiabes8a0jaaiMcaaaa@3C3E@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дифференцируемые функции, i,j=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGilaiaadQgacaaI9aGaaG ymaiaaiYcacaaIYaaaaa@3748@ . Заметим, что тогда системы функциональных уравнений (1) принимают общий вид:

                                                          Ξ ¯ X ¯ + R ¯ =χ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaiqadIfagaqeaiabgU caRiqadkfagaqeaiaai2dacqaHhpWycaaIUaaaaa@3959@

Основной результат этой статьи сформулируем в виде теоремы.

Теорема 1 Общее невырожденное решение системы (1) функциональных уравнений может быть представлено в следующем виде:

                      X ¯ =ΛX+ A 1 , Ξ ¯ =Ω ϒ ε Λ 1 , R ¯ =Ω[R ϒ ε Λ 1 A 1 ]+ B 1 , χ=Ω[ ϒ ε X+R]+ B 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaaceWGybGbae bacaaI9aGaeu4MdWKaamiwaiabgUcaRiaadgeadaWgaaWcbaGaaGym aaqabaGccaaISaaabaGaaGzbVdqaaiqbf65ayzaaraGaaGypaiabfM 6axjabfk9aHoaaBaaaleaacqaH1oqzaeqaaOGaeu4MdW0aaWbaaSqa beaacqGHsislcaaIXaaaaOGaaGilaaqaaaqaaiqadkfagaqeaiaai2 dacqqHPoWvcaaIBbGaamOuaiabgkHiTiabfk9aHoaaBaaaleaacqaH 1oqzaeqaaOGaeu4MdW0aaWbaaSqabeaacqGHsislcaaIXaaaaOGaam yqamaaBaaaleaacaaIXaaabeaakiaai2facqGHRaWkcaWGcbWaaSba aSqaaiaaigdaaeqaaOGaaGilaaqaaiaaywW7aeaacqaHhpWycaaI9a GaeuyQdCLaaG4waiabfk9aHoaaBaaaleaacqaH1oqzaeqaaOGaamiw aiabgUcaRiaadkfacaaIDbGaey4kaSIaamOqamaaBaaaleaacaaIXa aabeaakiaaiYcaaaaaaa@6AD1@     (13)

причем для первой системы из (1) ε=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGimaaaa@34E9@ , для второй " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGymaaaa@34EA@ , а для третьей " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaeyOeI0IaaGymaa aa@35D7@ .

Заметим, что множество матриц ϒ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaeyOeI0IaaG ymaaqabaaaaa@3596@  образует поле, изоморфное полю комплексных чисел (см. [2, с. 196]), множество матриц ϒ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaaGimaaqaba aaaa@34A8@  изоморфно алгебре дуальных чисел, а множество матриц ϒ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaaGymaaqaba aaaa@34A9@  изоморфно множеству матриц m n n m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaciaaaeaacaWGTb aabaGaamOBaaqaaiaad6gaaeaacaWGTbaaaaGaayjkaiaawMcaaaaa @3724@ , которое в свою очередь изоморфно алгебре двойных чисел. Таким образом, в равенствах (13) прослеживается тесная связь с двумерными гиперкомплексными числами.

3 Доказательство теоремы

Отметим, что метод доказательства этой теоремы разработан и апробирован в [5]. В процессе доказательства некоторые подобные вычисления будут опускаться.

Случай 1.

Здесь будет использоваться матричная система записей. Решение (5) подставим в уравнения первой системы из (1), которые затем продифференцируем по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

                                Ξ ¯ x ¯ '(y) y ¯ '(y) =ξ χ v , Ξ ¯ η αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ η =x χ v , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaabmaabaqbaeqabi qaaaqaaiqadIhagaqeaiaaiEcacaaIOaGaamyEaiaaiMcaaeaaceWG 5bGbaebacaaINaGaaGikaiaadMhacaaIPaaaaaGaayjkaiaawMcaai aai2dacqaH+oaEcqaHhpWydaWgaaWcbaGaamODaaqabaGccaaISaGa aGzbVlqbf65ayzaaraWaaSbaaSqaaiabeE7aObqabaGcdaqadaqaau aabeqaceaaaeaacqaHXoqycaWG4bGaey4kaSIabmiEayaaraGaaGik aiaadMhacaaIPaaabaGaeq4SdCMaamiEaiabgUcaRiqadMhagaqeai aaiIcacaWG5bGaaGykaaaaaiaawIcacaGLPaaacqGHRaWkceWGsbGb aebadaWgaaWcbaGaeq4TdGgabeaakiaai2dacaWG4bGaeq4Xdm2aaS baaSqaaiaadAhaaeqaaOGaaGilaaaa@611A@

где u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=xη+yξ+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadIhacqaH3oaAcq GHRaWkcaWG5bGaeqOVdGNaey4kaSIaeqyVd4gaaa@3C69@ , откуда вытекает

                                       x Ξ ¯ x ¯ '(y) y ¯ '(y) =ξ Ξ ¯ η αx+ x ¯ (y) γx+ y ¯ (y) +ξ R ¯ η . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGafuONdGLbaebadaqadaqaau aabeqaceaaaeaaceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaaa baGabmyEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaaaaaiaawIcaca GLPaaacaaI9aGaeqOVdGNafuONdGLbaebadaWgaaWcbaGaeq4TdGga beaakmaabmaabaqbaeqabiqaaaqaaiabeg7aHjaadIhacqGHRaWkce WG4bGbaebacaaIOaGaamyEaiaaiMcaaeaacqaHZoWzcaWG4bGaey4k aSIabmyEayaaraGaaGikaiaadMhacaaIPaaaaaGaayjkaiaawMcaai abgUcaRiabe67a4jqadkfagaqeamaaBaaaleaacqaH3oaAaeqaaOGa aGOlaaaa@5A04@

Дифференцируя по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , получаем алгебраическую систему уравнений для производных x ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EA@  и y ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EB@ :

                                                   Ξ ¯ x ¯ '(y) y ¯ '(y) =ξ Ξ ¯ η α γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaabmaabaqbaeqabi qaaaqaaiqadIhagaqeaiaaiEcacaaIOaGaamyEaiaaiMcaaeaaceWG 5bGbaebacaaINaGaaGikaiaadMhacaaIPaaaaaGaayjkaiaawMcaai aai2dacqaH+oaEcuqHEoawgaqeamaaBaaaleaacqaH3oaAaeqaaOWa aeWaaeaafaqabeGabaaabaGaeqySdegabaGaeq4SdCgaaaGaayjkai aawMcaaiaai6caaaa@48E2@                                                        (14)

Как сказано выше, матрица Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@  невырождена, поэтому система (14) имеет единственное решение, в котором зафиксируем переменные ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@3381@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ :

                                      x ¯ '(y)=β=const, y ¯ '(y)=δ=const. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiabek7aIjaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaaiYcacaaMf8UabmyEayaaraGaaG4jaiaaiIcacaWG5b GaaGykaiaai2dacqaH0oazcaaI9aGaam4yaiaad+gacaWGUbGaam4C aiaadshacaaIUaaaaa@4CF2@

Интегрируя эти уравнения и возвращаясь в (5), будем иметь X ¯ =ΛX+ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGybGbaebacaaI9aGaeu4MdWKaam iwaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaaaaa@385E@ , причём согласно первому из условий (2) матрица Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@  невырождена. Подставляя найденное в систему (1), получаем:

                                                          Ξ ˜ X+ R ˜ =χ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacaiaadIfacqGHRaWkce WGsbGbaGaacaaI9aGaeq4XdmMaaGilaaaa@392D@                                                               (15)

где Ξ ˜ = Ξ ¯ Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacaiaai2dacuqHEoawga qeaiabfU5ambaa@372C@ , R ˜ = R ¯ + Ξ ¯ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGsbGbaGaacaaI9aGabmOuayaara Gaey4kaSIafuONdGLbaebacaWGbbWaaSbaaSqaaiaaigdaaeqaaaaa @3888@ .

Далее, продифференцируем (15) по переменным ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

      Ξ ˜ ξ X+ R ˜ ξ =x χ u +y χ v , Ξ ˜ η X+ R ˜ η =x χ v , Ξ ˜ μ X+ R ˜ μ = χ u , Ξ ˜ ν X+ R ˜ ν = χ v . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacqaHhpWydaWgaaWcbaGaamyDaaqabaGccq GHRaWkcaWG5bGaeq4Xdm2aaSbaaSqaaiaadAhaaeqaaOGaaGilaiaa ywW7cuqHEoawgaacamaaBaaaleaacqaH3oaAaeqaaOGaamiwaiabgU caRiqadkfagaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiaadIha cqaHhpWydaWgaaWcbaGaamODaaqabaGccaaISaGaaGzbVlqbf65ayz aaiaWaaSbaaSqaaiabeY7aTbqabaGccaWGybGaey4kaSIabmOuayaa iaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeq4Xdm2aaSbaaSqaai aadwhaaeqaaOGaaGilaiaaywW7cuqHEoawgaacamaaBaaaleaacqaH 9oGBaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiabeE8aJnaaBaaaleaacaWG2baabeaakiaai6ca aaa@6F0B@

Второе и четвёртое соотношения, а также первое, третье и четвёртое, связаны следующими соотношениями:

               Ξ ˜ ξ X+ R ˜ ξ =x Ξ ˜ μ X+x R ˜ μ +y Ξ ˜ ν X+y R ˜ ν , Ξ ˜ η X+ R ˜ η =x Ξ ˜ ν X+x R ˜ ν . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacuqHEoawgaacamaaBaaaleaacqaH8oqBae qaaOGaamiwaiabgUcaRiaadIhaceWGsbGbaGaadaWgaaWcbaGaeqiV d0gabeaakiabgUcaRiaadMhacuqHEoawgaacamaaBaaaleaacqaH9o GBaeqaaOGaamiwaiabgUcaRiaadMhaceWGsbGbaGaadaWgaaWcbaGa eqyVd4gabeaakiaaiYcacaaMf8UafuONdGLbaGaadaWgaaWcbaGaeq 4TdGgabeaakiaadIfacqGHRaWkceWGsbGbaGaadaWgaaWcbaGaeq4T dGgabeaakiaai2dacaWG4bGafuONdGLbaGaadaWgaaWcbaGaeqyVd4 gabeaakiaadIfacqGHRaWkcaWG4bGabmOuayaaiaWaaSbaaSqaaiab e27aUbqabaGccaaIUaaaaa@657B@

Далее, сравнивая коэффициенты перед одинаковыми степенями переменных x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , будем иметь

           ξ ˜ ν = μ ˜ ν = ξ ˜ μ = μ ˜ μ = η ˜ ν = ν ˜ ν = η ˜ μ = ν ˜ μ = μ ˜ η = ν ˜ η = ρ ˜ ξ = ρ ˜ η = τ ˜ ξ = τ ˜ η =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabe27aUbqabaGc caaI9aGafqOVdGNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacu aH8oqBgaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaa iaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGafqyVd4MbaGaadaWgaa WcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacqaH 8oqBaeqaaOGaaGypaiqbe27aUzaaiaWaaSbaaSqaaiabeY7aTbqaba GccaaI9aGafqiVd0MbaGaadaWgaaWcbaGaeq4TdGgabeaakiaai2da cuaH9oGBgaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiqbeg8aYz aaiaWaaSbaaSqaaiabe67a4bqabaGccaaI9aGafqyWdiNbaGaadaWg aaWcbaGaeq4TdGgabeaakiaai2dacuaHepaDgaacamaaBaaaleaacq aH+oaEaeqaaOGaaGypaiqbes8a0zaaiaWaaSbaaSqaaiabeE7aObqa baGccaaI9aGaaGimaiaai6caaaa@71FB@

С учётом последнего, в (15) дифференцируем по μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@  и ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

                                    ρ ˜ μ = χ u 1 , ρ ˜ ν = χ v 1 , τ ˜ μ = χ u 2 , τ ˜ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1baabaGaaGymaaaa kiaaiYcacaaMf8UafqyWdiNbaGaadaWgaaWcbaGaeqyVd4gabeaaki aai2dacqaHhpWydaqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaGa aGzbVlqbes8a0zaaiaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeq 4Xdm2aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaaGilaiaaywW7cuaH epaDgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiabeE8aJnaaDa aaleaacaWG2baabaGaaGOmaaaakiaai6caaaa@59EB@

Интегрируя, получаем четвёртое равенство из (13) при ε=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGimaaaa@34E9@ . Затем найденное подставляя в (15), получаем остальные равенства из (13) при ε=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGimaaaa@34E9@ .

Решение (5) подставим теперь в уравнения второй системы из (1), где u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMhacqaH3oaAcq GHRaWkcqaH9oGBaaa@38C7@ . Затем, дифференцируя по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , получаем χ uv i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaiaadA haaeaacaWGPbaaaOGaaGypaiaaicdaaaa@3813@ , следовательно,

                              χ i = P i (xξ+μ,ρ,τ)+ Q i (yη+ν,ρ,τ),i=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaadMgaaa GccaaI9aGaamiuamaaCaaaleqabaGaamyAaaaakiaaiIcacaWG4bGa eqOVdGNaey4kaSIaeqiVd0MaaGilaiabeg8aYjaaiYcacqaHepaDca aIPaGaey4kaSIaamyuamaaCaaaleqabaGaamyAaaaakiaaiIcacaWG 5bGaeq4TdGMaey4kaSIaeqyVd4MaaGilaiabeg8aYjaaiYcacqaHep aDcaaIPaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOm aiaai6caaaa@5861@

Далее возвращаясь к системе (1), с учётом (5) будем иметь

   P i (xξ+μ,ρ,τ)= p i (ρ,τ)(xξ+μ),α ξ ¯ +γ μ ¯ =ξ p 1 (ρ,τ),α η ¯ +γ ν ¯ =ξ p 2 (ρ,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaWbaaSqabeaacaWGPbaaaO GaaGikaiaadIhacqaH+oaEcqGHRaWkcqaH8oqBcaaISaGaeqyWdiNa aGilaiabes8a0jaaiMcacaaI9aGaamiCamaaCaaaleqabaGaamyAaa aakiaaiIcacqaHbpGCcaaISaGaeqiXdqNaaGykaiaaiIcacaWG4bGa eqOVdGNaey4kaSIaeqiVd0MaaGykaiaaiYcacaaMf8UaeqySdeMafq OVdGNbaebacqGHRaWkcqaHZoWzcuaH8oqBgaqeaiaai2dacqaH+oaE caWGWbWaaWbaaSqabeaacaaIXaaaaOGaaGikaiabeg8aYjaaiYcacq aHepaDcaaIPaGaaGilaiaaywW7cqaHXoqycuaH3oaAgaqeaiabgUca Riabeo7aNjqbe27aUzaaraGaaGypaiabe67a4jaadchadaahaaWcbe qaaiaaikdaaaGccaaIOaGaeqyWdiNaaGilaiabes8a0jaaiMcacaaI Uaaaaa@7797@

Тогда система (1) принимает следующий вид:

                                           Ξ ¯ x ¯ (y) y ¯ (y) + R ¯ = Q 1 Q 2 +μ p 1 p 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaabmaabaqbaeqabi qaaaqaaiqadIhagaqeaiaaiIcacaWG5bGaaGykaaqaaiqadMhagaqe aiaaiIcacaWG5bGaaGykaaaaaiaawIcacaGLPaaacqGHRaWkceWGsb GbaebacaaI9aWaaeWaaeaafaqabeGabaaabaGaamyuamaaCaaaleqa baGaaGymaaaaaOqaaiaadgfadaahaaWcbeqaaiaaikdaaaaaaaGcca GLOaGaayzkaaGaey4kaSIaeqiVd02aaeWaaeaafaqabeGabaaabaGa amiCamaaCaaaleqabaGaaGymaaaaaOqaaiaadchadaahaaWcbeqaai aaikdaaaaaaaGccaGLOaGaayzkaaGaaGOlaaaa@4C58@                                                (16)

Затем, дифференцируя по y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , учитывая первое неравенство из (2), с точностью до переобозначения получаем y ¯ '(y)=a x ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaadggaceWG4bGbaebacaaINaGaaGikaiaadMha caaIPaaaaa@3BC1@ .

С учетом найденного продифференцируем систему (16) по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

                      x ¯ '(y)( ξ ¯ +a μ ¯ )=η Q v 1 , x ¯ (y)( ξ ¯ η +a μ ¯ η )+ ρ ¯ η =y Q v 1 , x ¯ '(y)( η ¯ +a ν ¯ )=η Q v 2 , x ¯ (y)( η ¯ η +a ν ¯ η )+ τ ¯ η =y Q v 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaaceWG4bGbae bacaaINaGaaGikaiaadMhacaaIPaGaaGikaiqbe67a4zaaraGaey4k aSIaamyyaiqbeY7aTzaaraGaaGykaiaai2dacqaH3oaAcaWGrbWaa0 baaSqaaiaadAhaaeaacaaIXaaaaOGaaGilaaqaaiaaywW7aeaaceWG 4bGbaebacaaIOaGaamyEaiaaiMcacaaIOaGafqOVdGNbaebadaWgaa WcbaGaeq4TdGgabeaakiabgUcaRiaadggacuaH8oqBgaqeamaaBaaa leaacqaH3oaAaeqaaOGaaGykaiabgUcaRiqbeg8aYzaaraWaaSbaaS qaaiabeE7aObqabaGccaaI9aGaamyEaiaadgfadaqhaaWcbaGaamOD aaqaaiaaigdaaaGccaaISaaabaaabaGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiaaiIcacuaH3oaAgaqeaiabgUcaRiaadggacuaH 9oGBgaqeaiaaiMcacaaI9aGaeq4TdGMaamyuamaaDaaaleaacaWG2b aabaGaaGOmaaaakiaaiYcaaeaacaaMf8oabaGabmiEayaaraGaaGik aiaadMhacaaIPaGaaGikaiqbeE7aOzaaraWaaSbaaSqaaiabeE7aOb qabaGccqGHRaWkcaWGHbGafqyVd4MbaebadaWgaaWcbaGaeq4TdGga beaakiaaiMcacqGHRaWkcuaHepaDgaqeamaaBaaaleaacqaH3oaAae qaaOGaaGypaiaadMhacaWGrbWaa0baaSqaaiaadAhaaeaacaaIYaaa aOGaaGilaaaaaaa@867D@

откуда получаем следуют дифференциальные уравнения

   y x ¯ '(y)( ξ ¯ +a μ ¯ )=η x ¯ (y)( ξ ¯ η +a μ ¯ η )+η ρ ¯ η ,y x ¯ '(y)( η ¯ +a ν ¯ )=η x ¯ (y)( η ¯ η +a ν ¯ η )+η τ ¯ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiaaiIcacuaH+oaEgaqeaiabgUcaRiaadggacuaH 8oqBgaqeaiaaiMcacaaI9aGaeq4TdGMabmiEayaaraGaaGikaiaadM hacaaIPaGaaGikaiqbe67a4zaaraWaaSbaaSqaaiabeE7aObqabaGc cqGHRaWkcaWGHbGafqiVd0MbaebadaWgaaWcbaGaeq4TdGgabeaaki aaiMcacqGHRaWkcqaH3oaAcuaHbpGCgaqeamaaBaaaleaacqaH3oaA aeqaaOGaaGilaiaaywW7caWG5bGabmiEayaaraGaaG4jaiaaiIcaca WG5bGaaGykaiaaiIcacuaH3oaAgaqeaiabgUcaRiaadggacuaH9oGB gaqeaiaaiMcacaaI9aGaeq4TdGMabmiEayaaraGaaGikaiaadMhaca aIPaGaaGikaiqbeE7aOzaaraWaaSbaaSqaaiabeE7aObqabaGccqGH RaWkcaWGHbGafqyVd4MbaebadaWgaaWcbaGaeq4TdGgabeaakiaaiM cacqGHRaWkcqaH3oaAcuaHepaDgaqeamaaBaaaleaacqaH3oaAaeqa aOGaaGilaaaa@7A2A@

которые имеют решения

                                          x ¯ (y)=βy+ a 1 , y ¯ (y)=δy+ a 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaeqOSdiMaamyEaiabgUcaRiaadggadaWgaaWcbaGaaGym aaqabaGccaaISaGaaGzbVlqadMhagaqeaiaaiIcacaWG5bGaaGykai aai2dacqaH0oazcaWG5bGaey4kaSIaamyyamaaBaaaleaacaaIYaaa beaakiaai6caaaa@47F1@

Тогда получаем X ¯ =ΛX+ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGybGbaebacaaI9aGaeu4MdWKaam iwaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaaaaa@385E@ , причём согласно первому из условий (2) матрица Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@  невырождена. Подставляя найденное в систему (1), имеем тождество (15), в котором u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMhacqaH3oaAcq GHRaWkcqaH9oGBaaa@38C7@ .

Равенство (15), в котором u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMhacqaH3oaAcq GHRaWkcqaH9oGBaaa@38C7@ , продифференцируем по ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

           Ξ ˜ ξ X+ R ˜ ξ =x χ u , Ξ ˜ η X+ R ˜ η =y χ v , Ξ ˜ μ X+ R ˜ μ = χ u , Ξ ˜ ν X+ R ˜ ν = χ v . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacqaHhpWydaWgaaWcbaGaamyDaaqabaGcca aISaGaaGzbVlqbf65ayzaaiaWaaSbaaSqaaiabeE7aObqabaGccaWG ybGaey4kaSIabmOuayaaiaWaaSbaaSqaaiabeE7aObqabaGccaaI9a GaamyEaiabeE8aJnaaBaaaleaacaWG2baabeaakiaaiYcacaaMf8Ua fuONdGLbaGaadaWgaaWcbaGaeqiVd0gabeaakiaadIfacqGHRaWkce WGsbGbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacqaHhpWydaWg aaWcbaGaamyDaaqabaGccaaISaGaaGzbVlqbf65ayzaaiaWaaSbaaS qaaiabe27aUbqabaGccaWGybGaey4kaSIabmOuayaaiaWaaSbaaSqa aiabe27aUbqabaGccaaI9aGaeq4Xdm2aaSbaaSqaaiaadAhaaeqaaO GaaGOlaaaa@6A44@

Первое и третье соотношения, а также второе и четвёртое связаны следующим образом:

                          Ξ ˜ ξ X+ R ˜ ξ =x Ξ ˜ μ X+x R ˜ μ , Ξ ˜ η X+ R ˜ η =y Ξ ˜ ν X+y R ˜ ν . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacuqHEoawgaacamaaBaaaleaacqaH8oqBae qaaOGaamiwaiabgUcaRiaadIhaceWGsbGbaGaadaWgaaWcbaGaeqiV d0gabeaakiaaiYcacaaMf8UafuONdGLbaGaadaWgaaWcbaGaeq4TdG gabeaakiaadIfacqGHRaWkceWGsbGbaGaadaWgaaWcbaGaeq4TdGga beaakiaai2dacaWG5bGafuONdGLbaGaadaWgaaWcbaGaeqyVd4gabe aakiaadIfacqGHRaWkcaWG5bGabmOuayaaiaWaaSbaaSqaaiabe27a UbqabaGccaaIUaaaaa@5A8B@

Далее, сравнивая коэффициенты перед одинаковыми степенями переменных x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , будем иметь

   ξ ˜ ν = μ ˜ ν = ξ ˜ μ = μ ˜ μ = η ˜ ν = ν ˜ ν = η ˜ μ = ν ˜ μ = ξ ˜ η = ρ ˜ η = ρ ˜ ξ = μ ˜ ξ = η ˜ η = τ ˜ η = ν ˜ ξ = τ ˜ ξ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabe27aUbqabaGc caaI9aGafqOVdGNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacu aH8oqBgaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaa iaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGafqyVd4MbaGaadaWgaa WcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacqaH 8oqBaeqaaOGaaGypaiqbe27aUzaaiaWaaSbaaSqaaiabeY7aTbqaba GccaaI9aGafqOVdGNbaGaadaWgaaWcbaGaeq4TdGgabeaakiaai2da cuaHbpGCgaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiqbeg8aYz aaiaWaaSbaaSqaaiabe67a4bqabaGccaaI9aGafqiVd0MbaGaadaWg aaWcbaGaeqOVdGhabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacq aH3oaAaeqaaOGaaGypaiqbes8a0zaaiaWaaSbaaSqaaiabeE7aObqa baGccaaI9aGafqyVd4MbaGaadaWgaaWcbaGaeqOVdGhabeaakiaai2 dacuaHepaDgaacamaaBaaaleaacqaH+oaEaeqaaOGaaGypaiaaicda caaISaaaaa@7B06@

                                     ρ ˜ ν = μ ˜ η , ξ ˜ ξ = ρ ˜ μ , ν ˜ η = τ ˜ ν , τ ˜ μ = η ˜ ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabeE7aObqabaGc caaISaGaaGzbVlqbe67a4zaaiaWaaSbaaSqaaiabe67a4bqabaGcca aI9aGafqyWdiNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaaiYcacaaM f8UafqyVd4MbaGaadaWgaaWcbaGaeq4TdGgabeaakiaai2dacuaHep aDgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGilaiaaywW7cuaHepaD gaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaaiaWaaS baaSqaaiabe67a4bqabaGccaaIUaaaaa@5A2A@

С учётом последнего ещё получаем

                                    ρ ˜ μ = χ u 1 , ρ ˜ ν = χ v 1 , τ ˜ μ = χ u 2 , τ ˜ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1baabaGaaGymaaaa kiaaiYcacaaMf8UafqyWdiNbaGaadaWgaaWcbaGaeqyVd4gabeaaki aai2dacqaHhpWydaqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaGa aGzbVlqbes8a0zaaiaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeq 4Xdm2aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaaGilaiaaywW7cuaH epaDgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiabeE8aJnaaDa aaleaacaWG2baabaGaaGOmaaaakiaai6caaaa@59EB@

Интегрируя найденное, затем подставляя в (15), окончательно получаем (13) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGymaaaa@34EA@ . Наконец, решение (5) подставим в уравнения третьей системы из (1) (напомним, что u=xξyη+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHsislcaWG5bGaeq4TdGMaey4kaSIaeqiVd0gaaa@3C71@ , v=xη+yξ+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadIhacqaH3oaAcq GHRaWkcaWG5bGaeqOVdGNaey4kaSIaeqyVd4gaaa@3C69@  ), которые затем продифференцируем по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

            Ξ ¯ η αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ η =y χ u +x χ v , Ξ ¯ ξ αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ ξ =x χ u +y χ v , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaaBaaaleaacqaH3o aAaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdeMaamiEaiabgUca RiqadIhagaqeaiaaiIcacaWG5bGaaGykaaqaaiabeo7aNjaadIhacq GHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcaaaaacaGLOaGaayzk aaGaey4kaSIabmOuayaaraWaaSbaaSqaaiabeE7aObqabaGccaaI9a GaeyOeI0IaamyEaiabeE8aJnaaBaaaleaacaWG1baabeaakiabgUca RiaadIhacqaHhpWydaWgaaWcbaGaamODaaqabaGccaaISaGaaGzbVl qbf65ayzaaraWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaauaabeqa ceaaaeaacqaHXoqycaWG4bGaey4kaSIabmiEayaaraGaaGikaiaadM hacaaIPaaabaGaeq4SdCMaamiEaiabgUcaRiqadMhagaqeaiaaiIca caWG5bGaaGykaaaaaiaawIcacaGLPaaacqGHRaWkceWGsbGbaebada WgaaWcbaGaeqOVdGhabeaakiaai2dacaWG4bGaeq4Xdm2aaSbaaSqa aiaadwhaaeqaaOGaey4kaSIaamyEaiabeE8aJnaaBaaaleaacaWG2b aabeaakiaaiYcaaaa@7634@

                          Ξ ¯ μ αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ μ = χ u , Ξ ¯ ν αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ ν = χ v , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaaBaaaleaacqaH8o qBaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdeMaamiEaiabgUca RiqadIhagaqeaiaaiIcacaWG5bGaaGykaaqaaiabeo7aNjaadIhacq GHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcaaaaacaGLOaGaayzk aaGaey4kaSIabmOuayaaraWaaSbaaSqaaiabeY7aTbqabaGccaaI9a Gaeq4Xdm2aaSbaaSqaaiaadwhaaeqaaOGaaGilaiaayIW7cuqHEoaw gaqeamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaafaqabeGabaaaba GaeqySdeMaamiEaiabgUcaRiqadIhagaqeaiaaiIcacaWG5bGaaGyk aaqaaiabeo7aNjaadIhacqGHRaWkceWG5bGbaebacaaIOaGaamyEai aaiMcaaaaacaGLOaGaayzkaaGaey4kaSIabmOuayaaraWaaSbaaSqa aiabe27aUbqabaGccaaI9aGaeq4Xdm2aaSbaaSqaaiaadAhaaeqaaO GaaGilaaaa@69BF@

откуда следуют равенства

                              Ξ ¯ μ α γ = Ξ ¯ ν α γ = Ξ ¯ μ x ¯ '(y) y ¯ '(y) = Ξ ¯ ν x ¯ '(y) y ¯ '(y) =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaaBaaaleaacqaH8o qBaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdegabaGaeq4SdCga aaGaayjkaiaawMcaaiaai2dacuqHEoawgaqeamaaBaaaleaacqaH9o GBaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdegabaGaeq4SdCga aaGaayjkaiaawMcaaiaai2dacuqHEoawgaqeamaaBaaaleaacqaH8o qBaeqaaOWaaeWaaeaafaqabeGabaaabaGabmiEayaaraGaaG4jaiaa iIcacaWG5bGaaGykaaqaaiqadMhagaqeaiaaiEcacaaIOaGaamyEai aaiMcaaaaacaGLOaGaayzkaaGaaGypaiqbf65ayzaaraWaaSbaaSqa aiabe27aUbqabaGcdaqadaqaauaabeqaceaaaeaaceWG4bGbaebaca aINaGaaGikaiaadMhacaaIPaaabaGabmyEayaaraGaaG4jaiaaiIca caWG5bGaaGykaaaaaiaawIcacaGLPaaacaaI9aGaaGimaiaai6caaa a@61FD@

Интегрируя найденное по μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@  и ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , после чего разделяя переменные, получаем

                                      x ¯ '(y)=β=const, y ¯ '(y)=δ=const; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiabek7aIjaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaaiYcacaaMf8UabmyEayaaraGaaG4jaiaaiIcacaWG5b GaaGykaiaai2dacqaH0oazcaaI9aGaam4yaiaad+gacaWGUbGaam4C aiaadshacaaI7aaaaa@4CFF@

следовательно, X ¯ =ΛX+ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGybGbaebacaaI9aGaeu4MdWKaam iwaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaaaaa@385E@ , где матрица Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@  невырождена. Подставляя найденное в систему (1), имеем равенство (15), в котором u=xξyη+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHsislcaWG5bGaeq4TdGMaey4kaSIaeqiVd0gaaa@3C71@ , v=xξ+yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadIhacqaH+oaEcq GHRaWkcaWG5bGaeq4TdGMaey4kaSIaeqyVd4gaaa@3C69@ . Далее, дифференцируя (15) по переменным ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , после чего рассуждая как выше, получаем

                   ξ ˜ ν = μ ˜ ν = ξ ˜ μ = μ ˜ μ = η ˜ ν = ν ˜ ν = η ˜ μ = ν ˜ μ = ρ ˜ ξ = ρ ˜ η = τ ˜ ξ = τ ˜ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabe27aUbqabaGc caaI9aGafqOVdGNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacu aH8oqBgaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaa iaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGafqyVd4MbaGaadaWgaa WcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacqaH 8oqBaeqaaOGaaGypaiqbe27aUzaaiaWaaSbaaSqaaiabeY7aTbqaba GccaaI9aGafqyWdiNbaGaadaWgaaWcbaGaeqOVdGhabeaakiaai2da cuaHbpGCgaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiqbes8a0z aaiaWaaSbaaSqaaiabe67a4bqabaGccaaI9aGafqiXdqNbaGaadaWg aaWcbaGaeq4TdGgabeaakiaai2dacaaIWaGaaGilaaaa@691B@

                 ρ ˜ μ = μ ˜ η , ρ ˜ ν = ξ ˜ η , ρ ˜ μ = ξ ˜ ξ , ρ ˜ ν = μ ˜ ξ , τ ˜ μ = ν ˜ η , τ ˜ ν = η ˜ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiabgkHiTiqbeY7aTzaaiaWaaSbaaSqaaiabeE7a ObqabaGccaaISaGaaGzbVlqbeg8aYzaaiaWaaSbaaSqaaiabe27aUb qabaGccaaI9aGafqOVdGNbaGaadaWgaaWcbaGaeq4TdGgabeaakiaa iYcacaaMf8UafqyWdiNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2 dacuaH+oaEgaacamaaBaaaleaacqaH+oaEaeqaaOGaaGilaiaaywW7 cuaHbpGCgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiqbeY7aTz aaiaWaaSbaaSqaaiabe67a4bqabaGccaaISaGaaGzbVlqbes8a0zaa iaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeyOeI0IafqyVd4MbaG aadaWgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UafqiXdqNbaGaa daWgaaWcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaale aacqaH3oaAaeqaaOGaaGilaaaa@70EB@

                    τ ˜ μ = η ˜ ξ , τ ˜ ν = ν ˜ ξ , ρ ˜ μ = χ u 1 , ρ ˜ ν = χ v 1 , τ ˜ μ = χ u 2 , τ ˜ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiqbeE7aOzaaiaWaaSbaaSqaaiabe67a4bqabaGc caaISaGaaGzbVlqbes8a0zaaiaWaaSbaaSqaaiabe27aUbqabaGcca aI9aGafqyVd4MbaGaadaWgaaWcbaGaeqOVdGhabeaakiaaiYcacaaM f8UafqyWdiNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacqaHhp WydaqhaaWcbaGaamyDaaqaaiaaigdaaaGccaaISaGaaGzbVlqbeg8a YzaaiaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGaeq4Xdm2aa0baaS qaaiaadAhaaeaacaaIXaaaaOGaaGilaiaaywW7cuaHepaDgaacamaa BaaaleaacqaH8oqBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1b aabaGaaGOmaaaakiaaiYcacaaMf8UafqiXdqNbaGaadaWgaaWcbaGa eqyVd4gabeaakiaai2dacqaHhpWydaqhaaWcbaGaamODaaqaaiaaik daaaGccaaIUaaaaa@6EF7@

Проинтегрируя полученное и подставив в (15), получим (13) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaeyOeI0IaaGymaa aa@35D7@ .

Случай 2.

Теперь подставим решение (6) в уравнения первой системы из (1), которые затем продифференцируем по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

( x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ ) e ax =ξ χ v 1 , x ¯ (y) e ax α a ξ ¯ η + y ¯ (y) e ax γ a μ ¯ η + ρ ¯ η =x χ v 1 , ( x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ ) e ax =ξ χ v 2 , x ¯ (y) e ax α a η ¯ η + y ¯ (y) e ax γ a ν ¯ η + τ ¯ η =x χ v 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaacaaIOaGabm iEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbe67a4zaaraGaey4k aSIabmyEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbeY7aTzaara GaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaaGypaiab e67a4jabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcaae aacaaMf8oabaWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaaaiaawIcacaGLPaaacuaH+oaEgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSYaaeWaaeaaceWG5bGbaebaca aIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaa kiabgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPa aacuaH8oqBgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIafqyW diNbaebadaWgaaWcbaGaeq4TdGgabeaakiaai2dacaWG4bGaeq4Xdm 2aa0baaSqaaiaadAhaaeaacaaIXaaaaOGaaGilaaqaaaqaaiaaiIca ceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaGafq4TdGMbaebacq GHRaWkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqyVd4Mb aebacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9a GaeqOVdGNaeq4Xdm2aa0baaSqaaiaadAhaaeaacaaIYaaaaOGaaGil aaqaaiaaywW7aeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5bGaaG ykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0YaaSaa aeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbeE7aOzaara WaaSbaaSqaaiabeE7aObqabaGccqGHRaWkdaqadaqaaiqadMhagaqe aiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4b aaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjkaiaa wMcaaiqbe27aUzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcu aHepaDgaqeamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiaadIhacqaH hpWydaqhaaWcbaGaamODaaqaaiaaikdaaaGccaaISaaaaaaa@B965@

откуда следуют равенства

         x( x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ ) e ax =ξ x ¯ (y) e ax α a ξ ¯ η + y ¯ (y) e ax γ a μ ¯ η + ρ ¯ η , x( x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ ) e ax =ξ x ¯ (y) e ax α a η ¯ η + y ¯ (y) e ax γ a ν ¯ η + τ ¯ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamiEaiaaiI caceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqOVdGNbaeba cqGHRaWkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqiVd0 MbaebacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI 9aGaeqOVdG3aaeWaaeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5b GaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0Ya aSaaaeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe67a4z aaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkdaqadaqaaiqadMha gaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggaca WG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjk aiaawMcaaiqbeY7aTzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRa WkcuaHbpGCgaqeamaaBaaaleaacqaH3oaAaeqaaaGccaGLOaGaayzk aaGaaGilaaqaaaqaaiaadIhacaaIOaGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiqbe27aUzaaraGaaGykaiaadwgadaahaa WcbeqaaiaadggacaWG4baaaOGaaGypaiabe67a4naabmaabaWaaeWa aeaaceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabe aacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeqySdegabaGaamyy aaaaaiaawIcacaGLPaaacuaH3oaAgaqeamaaBaaaleaacqaH3oaAae qaaOGaey4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba Gaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPaaacuaH9oGBgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSIafqiXdqNbaebadaWgaaWcba Gaeq4TdGgabeaaaOGaayjkaiaawMcaaiaaiYcaaaaaaa@A7C9@

и далее однородная алгебраическая система уравнений относительно производных x ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EA@  и y ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EB@ :

                                   x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ =0, x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafqOVdGNbaebacqGHRaWkceWG5bGbaebacaaINaGaaGik aiaadMhacaaIPaGafqiVd0MbaebacaaI9aGaaGimaiaaiYcacaaMf8 UabmiEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbeE7aOzaaraGa ey4kaSIabmyEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbe27aUz aaraGaaGypaiaaicdacaaISaaaaa@5164@

которая имеет только нулевое решение x ¯ '(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaaicdaaaa@376B@ , y ¯ '(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaaicdaaaa@376C@ , поскольку, согласно второму из условий (2) матрица Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@  невырождена. Тогда x ¯ (y)=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3AC0@ , y ¯ (y)=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3AC1@ , что несовместимо с первым из условий (2).

Теперь подставим решение (6) в уравнения второй системы из (1), которые затем продифференцируем по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ :

a( x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ ) e ax =ξ χ u 1 , x ¯ (y) e ax α a ξ ¯ ξ + y ¯ (y) e ax γ a μ ¯ ξ + ρ ¯ ξ =x χ u 1 , a( x ¯ (y) η ¯ + y ¯ (y) ν ¯ ) e ax =ξ χ u 2 , x ¯ (y) e ax α a η ¯ ξ + y ¯ (y) e ax γ a ν ¯ ξ + τ ¯ ξ =x χ u 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaacaWGHbGaaG ikaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiqbe67a4zaaraGaey4k aSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqiVd0MbaebacaaIPa GaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9aGaeqOVdGNa eq4Xdm2aa0baaSqaaiaadwhaaeaacaaIXaaaaOGaaGilaaqaaiaayw W7aeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiaadwga daahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHXo qyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe67a4zaaraWaaSbaaSqa aiabe67a4bqabaGccqGHRaWkdaqadaqaaiqadMhagaqeaiaaiIcaca WG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOe I0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjkaiaawMcaaiqbeY 7aTzaaraWaaSbaaSqaaiabe67a4bqabaGccqGHRaWkcuaHbpGCgaqe amaaBaaaleaacqaH+oaEaeqaaOGaaGypaiaadIhacqaHhpWydaqhaa WcbaGaamyDaaqaaiaaigdaaaGccaaISaaabaaabaGaamyyaiaaiIca ceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH3oaAgaqeaiabgUcaRi qadMhagaqeaiaaiIcacaWG5bGaaGykaiqbe27aUzaaraGaaGykaiaa dwgadaahaaWcbeqaaiaadggacaWG4baaaOGaaGypaiabe67a4jabeE 8aJnaaDaaaleaacaWG1baabaGaaGOmaaaakiaaiYcaaeaacaaMf8oa baWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaW baaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeqySdega baGaamyyaaaaaiaawIcacaGLPaaacuaH3oaAgaqeamaaBaaaleaacq aH+oaEaeqaaOGaey4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyE aiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTm aalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPaaacuaH9oGB gaqeamaaBaaaleaacqaH+oaEaeqaaOGaey4kaSIafqiXdqNbaebada WgaaWcbaGaeqOVdGhabeaakiaai2dacaWG4bGaeq4Xdm2aa0baaSqa aiaadwhaaeaacaaIYaaaaOGaaGilaaaaaaa@B8F3@

откуда следуют равенства

            ax( x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ ) e ax =ξ x ¯ (y) e ax α a ξ ¯ ξ + y ¯ (y) e ax γ a μ ¯ ξ + ρ ¯ ξ , ax( x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ ) e ax =ξ x ¯ (y) e ax α a η ¯ ξ + y ¯ (y) e ax γ a ν ¯ ξ + τ ¯ ξ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGabaaabaGaamyyaiaadIhaca aIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGafqOVdGNbaebacqGH RaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacuaH8oqBgaqeaiaaiM cacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiaai2dacqaH+oaE daqadaqaamaabmaabaGabmiEayaaraGaaGikaiaadMhacaaIPaGaam yzamaaCaaaleqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiab eg7aHbqaaiaadggaaaaacaGLOaGaayzkaaGafqOVdGNbaebadaWgaa WcbaGaeqOVdGhabeaakiabgUcaRmaabmaabaGabmyEayaaraGaaGik aiaadMhacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccq GHsisldaWcaaqaaiabeo7aNbqaaiaadggaaaaacaGLOaGaayzkaaGa fqiVd0MbaebadaWgaaWcbaGaeqOVdGhabeaakiabgUcaRiqbeg8aYz aaraWaaSbaaSqaaiabe67a4bqabaaakiaawIcacaGLPaaacaaISaaa baGaamyyaiaadIhacaaIOaGabmiEayaaraGaaG4jaiaaiIcacaWG5b GaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGaaG4jaiaaiIca caWG5bGaaGykaiqbe27aUzaaraGaaGykaiaadwgadaahaaWcbeqaai aadggacaWG4baaaOGaaGypaiabe67a4naabmaabaWaaeWaaeaaceWG 4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHb GaamiEaaaakiabgkHiTmaalaaabaGaeqySdegabaGaamyyaaaaaiaa wIcacaGLPaaacuaH3oaAgaqeamaaBaaaleaacqaH+oaEaeqaaOGaey 4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWa aWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeq4SdC gabaGaamyyaaaaaiaawIcacaGLPaaacuaH9oGBgaqeamaaBaaaleaa cqaH+oaEaeqaaOGaey4kaSIafqiXdqNbaebadaWgaaWcbaGaeqOVdG habeaaaOGaayjkaiaawMcaaiaaiYcaaaaaaa@A8BA@

и далее однородная алгебраическая система уравнений относительно x ¯ (y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM caaaa@3539@  и y ¯ (y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaIOaGaamyEaiaaiM caaaa@353A@ :

                                   x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ =0, x ¯ (y) η ¯ + y ¯ (y) ν ¯ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacuaH+oaEgaqeaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aiqbeY7aTzaaraGaaGypaiaaicdacaaISaGaaGzbVlqadIhagaqeai aaiIcacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGa aGikaiaadMhacaaIPaGafqyVd4MbaebacaaI9aGaaGimaiaaiYcaaa a@4EA0@

которая имеет только нулевое решение x ¯ (y)= y ¯ (y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGabmyEayaaraGaaGikaiaadMhacaaIPaGaaGypaiaaicda aaa@3AFA@ , поскольку матрица Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@  невырождена. Тогда для функций x ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebaaaa@32D6@  и y ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebaaaa@32D7@  первое из условий в (2) не выполняется.

Наконец, подставим решение (6) в уравнения третьей системы в (1), которые затем продифференцируем по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

                      a( x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ ) e ax =ξ χ u 1 +η χ v 1 , x ¯ (y) e ax α a ξ ¯ ξ + y ¯ (y) e ax γ a μ ¯ ξ + ρ ¯ ξ =x χ u 1 +y χ v 1 , x ¯ (y) e ax α a ξ ¯ μ + y ¯ (y) e ax γ a μ ¯ μ + ρ ¯ μ = χ u 1 , x ¯ (y) e ax α a ξ ¯ ν + y ¯ (y) e ax γ a μ ¯ ν + ρ ¯ ν = χ v 1 , a( x ¯ (y) η ¯ + y ¯ (y) ν ¯ ) e ax =ξ χ u 2 +η χ v 2 , x ¯ (y) e ax α a η ¯ ξ + y ¯ (y) e ax γ a ν ¯ ξ + τ ¯ ξ =x χ u 2 +y χ v 2 , x ¯ (y) e ax α a η ¯ μ + y ¯ (y) e ax γ a ν ¯ μ + τ ¯ μ = χ u 2 , x ¯ (y) e ax α a η ¯ ν + y ¯ (y) e ax γ a ν ¯ ν + τ ¯ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeaccaaaaaqaaaqaaiaaywW7ca WGHbGaaGikaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiqbe67a4zaa raGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqiVd0Mbae bacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9aGa eqOVdGNaeq4Xdm2aa0baaSqaaiaadwhaaeaacaaIXaaaaOGaey4kaS Iaeq4TdGMaeq4Xdm2aa0baaSqaaiaadAhaaeaacaaIXaaaaOGaaGil aaqaaaqaamaabmaabaGabmiEayaaraGaaGikaiaadMhacaaIPaGaam yzamaaCaaaleqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiab eg7aHbqaaiaadggaaaaacaGLOaGaayzkaaGafqOVdGNbaebadaWgaa WcbaGaeqOVdGhabeaakiabgUcaRmaabmaabaGabmyEayaaraGaaGik aiaadMhacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccq GHsisldaWcaaqaaiabeo7aNbqaaiaadggaaaaacaGLOaGaayzkaaGa fqiVd0MbaebadaWgaaWcbaGaeqOVdGhabeaakiabgUcaRiqbeg8aYz aaraWaaSbaaSqaaiabe67a4bqabaGccaaI9aGaamiEaiabeE8aJnaa DaaaleaacaWG1baabaGaaGymaaaakiabgUcaRiaadMhacqaHhpWyda qhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaaabaaabaWaaeWaaeaa ceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaaca WGHbGaamiEaaaakiabgkHiTmaalaaabaGaeqySdegabaGaamyyaaaa aiaawIcacaGLPaaacuaH+oaEgaqeamaaBaaaleaacqaH8oqBaeqaaO Gaey4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyEaiaaiMcacaWG LbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeq 4SdCgabaGaamyyaaaaaiaawIcacaGLPaaacuaH8oqBgaqeamaaBaaa leaacqaH8oqBaeqaaOGaey4kaSIafqyWdiNbaebadaWgaaWcbaGaeq iVd0gabeaakiaai2dacqaHhpWydaqhaaWcbaGaamyDaaqaaiaaigda aaGccaaISaaabaaabaWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEai aaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaa laaabaGaeqySdegabaGaamyyaaaaaiaawIcacaGLPaaacuaH+oaEga qeamaaBaaaleaacqaH9oGBaeqaaOGaey4kaSYaaeWaaeaaceWG5bGb aebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaam iEaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIca caGLPaaacuaH8oqBgaqeamaaBaaaleaacqaH9oGBaeqaaOGaey4kaS IafqyWdiNbaebadaWgaaWcbaGaeqyVd4gabeaakiaai2dacqaHhpWy daqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaaabaaabaGaaGzbVl aadggacaaIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGafq4TdGMb aebacqGHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacuaH9oGBga qeaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiaai2da cqaH+oaEcqaHhpWydaqhaaWcbaGaamyDaaqaaiaaikdaaaGccqGHRa WkcqaH3oaAcqaHhpWydaqhaaWcbaGaamODaaqaaiaaikdaaaGccaaI SaaabaaabaWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEaiaaiMcaca WGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGa eqySdegabaGaamyyaaaaaiaawIcacaGLPaaacuaH3oaAgaqeamaaBa aaleaacqaH+oaEaeqaaOGaey4kaSYaaeWaaeaaceWG5bGbaebacaaI OaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaaki abgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPaaa cuaH9oGBgaqeamaaBaaaleaacqaH+oaEaeqaaOGaey4kaSIafqiXdq NbaebadaWgaaWcbaGaeqOVdGhabeaakiaai2dacaWG4bGaeq4Xdm2a a0baaSqaaiaadwhaaeaacaaIYaaaaOGaey4kaSIaamyEaiabeE8aJn aaDaaaleaacaWG2baabaGaaGOmaaaakiaaiYcaaeaaaeaadaqadaqa aiqadIhagaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaai aadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHXoqyaeaacaWGHbaa aaGaayjkaiaawMcaaiqbeE7aOzaaraWaaSbaaSqaaiabeY7aTbqaba GccqGHRaWkdaqadaqaaiqadMhagaqeaiaaiIcacaWG5bGaaGykaiaa dwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacq aHZoWzaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe27aUzaaraWaaSba aSqaaiabeY7aTbqabaGccqGHRaWkcuaHepaDgaqeamaaBaaaleaacq aH8oqBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1baabaGaaGOm aaaakiaaiYcaaeaaaeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5b GaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0Ya aSaaaeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbeE7aOz aaraWaaSbaaSqaaiabe27aUbqabaGccqGHRaWkdaqadaqaaiqadMha gaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggaca WG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjk aiaawMcaaiqbe27aUzaaraWaaSbaaSqaaiabe27aUbqabaGccqGHRa WkcuaHepaDgaqeamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiabeE8a JnaaDaaaleaacaWG2baabaGaaGOmaaaakiaai6caaaaaaa@755F@

Подставляя третье и четвёртое равенства во второе, а седьмое и восьмое в шестое, после чего сравнивая коэффициенты перед x e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaamyzamaaCaaaleqabaGaam yyaiaadIhaaaaaaa@35B8@  и y e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaamyzamaaCaaaleqabaGaam yyaiaadIhaaaaaaa@35B9@ , получаем:

x ¯ (y) ξ ¯ μ + y ¯ (y) μ ¯ μ =0, x ¯ (y) η ¯ μ + y ¯ (y) ν ¯ μ =0, x ¯ (y) ξ ¯ ν + y ¯ (y) μ ¯ ν =0, x ¯ (y) η ¯ ν + y ¯ (y) ν ¯ ν =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacuaH+oaEgaqeamaaBaaaleaacqaH8oqBaeqaaOGaey4kaSIabmyE ayaaraGaaGikaiaadMhacaaIPaGafqiVd0MbaebadaWgaaWcbaGaeq iVd0gabeaakiaai2dacaaIWaGaaGilaiaaywW7ceWG4bGbaebacaaI OaGaamyEaiaaiMcacuaH3oaAgaqeamaaBaaaleaacqaH8oqBaeqaaO Gaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqyVd4Mbaeba daWgaaWcbaGaeqiVd0gabeaakiaai2dacaaIWaGaaGilaiaaywW7ce WG4bGbaebacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeamaaBaaaleaa cqaH9oGBaeqaaOGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPa GafqiVd0MbaebadaWgaaWcbaGaeqyVd4gabeaakiaai2dacaaIWaGa aGilaiaaywW7ceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH3oaAga qeamaaBaaaleaacqaH9oGBaeqaaOGaey4kaSIabmyEayaaraGaaGik aiaadMhacaaIPaGafqyVd4MbaebadaWgaaWcbaGaeqyVd4gabeaaki aai2dacaaIWaGaaG4oaaaa@7C84@

следовательно функции χ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaaaaa@355A@ , χ v 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaigdaaaaaaa@355B@ , χ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@355B@ , χ v 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaikdaaaaaaa@355C@  зависят только от ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@3381@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ . Тогда из первого и пятого уравнений вытекает:

                                   x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ =0, x ¯ (y) η ¯ + y ¯ (y) ν ¯ =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacuaH+oaEgaqeaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aiqbeY7aTzaaraGaaGypaiaaicdacaaISaGaaGzbVlqadIhagaqeai aaiIcacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGa aGikaiaadMhacaaIPaGafqyVd4MbaebacaaI9aGaaGimaiaaiUdaaa a@4EAF@

следовательно, x ¯ (y)= y ¯ (y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGabmyEayaaraGaaGikaiaadMhacaaIPaGaaGypaiaaicda aaa@3AFA@ , что приводит к противоречию с первым из неравенств в (2).

Случай 3.1.

Подставим решение (7) в первое уравнение первой системы в (1) и продифференцируем его по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

                                       ( x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ ) e ax =ξ χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiqbe67a4zaaraGaey4kaSIaaGikaiqadIhagaqe aiaaiEcacaaIOaGaamyEaiaaiMcacaWG4bGaey4kaSIabmyEayaara GaaG4jaiaaiIcacaWG5bGaaGykaiaaiMcacuaH8oqBgaqeaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiaai2dacqaH+oaEcq aHhpWydaqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaaaaa@5159@

                  x ¯ (y) e ax α a ξ ¯ η + ( x ¯ (y)x+ y ¯ (y)) e ax γ a + α a 2 μ ¯ η + ρ ¯ η =x χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiqadIhagaqeaiaaiIcaca WG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOe I0YaaSaaaeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe6 7a4zaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkdaqadaqaaiaa iIcaceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWG4bGaey4kaSIabm yEayaaraGaaGikaiaadMhacaaIPaGaaGykaiaadwgadaahaaWcbeqa aiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHb aaaiabgUcaRmaalaaabaGaeqySdegabaGaamyyamaaCaaaleqabaGa aGOmaaaaaaaakiaawIcacaGLPaaacuaH8oqBgaqeamaaBaaaleaacq aH3oaAaeqaaOGaey4kaSIafqyWdiNbaebadaWgaaWcbaGaeq4TdGga beaakiaai2dacaWG4bGaeq4Xdm2aa0baaSqaaiaadAhaaeaacaaIXa aaaOGaaGilaaaa@6707@

откуда следует соотношение

             x( x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ ) e ax = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeaiabgUcaRiaaiIcaceWG 4bGbaebacaaINaGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadM hagaqeaiaaiEcacaaIOaGaamyEaiaaiMcacaaIPaGafqiVd0Mbaeba caaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9aaaaa@4C39@

                  =ξ x ¯ (y) e ax α a ξ ¯ η + x ¯ (y)x+ y ¯ (y) e ax γ a + α a 2 μ ¯ η + ρ ¯ η . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqOVdG3aaeWaaeaadaqada qaaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqa aiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHXoqyaeaacaWGHb aaaaGaayjkaiaawMcaaiqbe67a4zaaraWaaSbaaSqaaiabeE7aObqa baGccqGHRaWkdaqadaqaamaabmaabaGabmiEayaaraGaaGikaiaadM hacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aaGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaO GaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaiabgUcaRmaalaaa baGaeqySdegabaGaamyyamaaCaaaleqabaGaaGOmaaaaaaaakiaawI cacaGLPaaacuaH8oqBgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4k aSIafqyWdiNbaebadaWgaaWcbaGaeq4TdGgabeaaaOGaayjkaiaawM caaiaai6caaaa@65D8@

Сравнивая коэффициенты при x 2 e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaO GaamyzamaaCaaaleqabaGaamyyaiaadIhaaaaaaa@36AB@ , x e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaamyzamaaCaaaleqabaGaam yyaiaadIhaaaaaaa@35B8@ , e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacaWGHbGaam iEaaaaaaa@34BB@ , получаем

x ¯ '(y)=0, x ¯ (y)=β, y ¯ '(y)=δ= βξ μ ¯ η μ ¯ =const, y ¯ (y)=δy+b,β ξ ¯ η +(δy+b) μ ¯ η =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaaicdacaaISaGaaGzbVlqadIhagaqeaiaaiIca caWG5bGaaGykaiaai2dacqaHYoGycaaISaGaaGzbVlqadMhagaqeai aaiEcacaaIOaGaamyEaiaaiMcacaaI9aGaeqiTdqMaaGypamaalaaa baGaeqOSdiMaeqOVdGNafqiVd0MbaebadaWgaaWcbaGaeq4TdGgabe aaaOqaaiqbeY7aTzaaraaaaiaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaaiYcacaaMf8UabmyEayaaraGaaGikaiaadMhacaaIPa GaaGypaiabes7aKjaadMhacqGHRaWkcaWGIbGaaGilaiaaywW7cqaH YoGycuaH+oaEgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIaaG ikaiabes7aKjaadMhacqGHRaWkcaWGIbGaaGykaiqbeY7aTzaaraWa aSbaaSqaaiabeE7aObqabaGccaaI9aGaaGimaiaaiUdaaaa@76E4@

следовательно, β μ ¯ η =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycuaH8oqBgaqeamaaBaaale aacqaH3oaAaeqaaOGaaGypaiaaicdaaaa@3893@  и δ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaaGimaaaa@34E7@ . Тогда получаем решение

                                   x ¯ =β e ax α a , y ¯ =(βx+b) e ax γ a + α a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGaeqOSdiMaam yzamaaCaaaleqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiab eg7aHbqaaiaadggaaaGaaGilaiaaywW7ceWG5bGbaebacaaI9aGaaG ikaiabek7aIjaadIhacqGHRaWkcaWGIbGaaGykaiaadwgadaahaaWc beqaaiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaaca WGHbaaaiabgUcaRmaalaaabaGaeqySdegabaGaamyyamaaCaaaleqa baGaaGOmaaaaaaGccaaISaaaaa@515F@

которое не удовлетворяет первому неравенству из (2), что недопустимо.

Подобным образом рассуждая относительно второй и третий систем из (1), получаем отрицательный результат.

Случай 3.2.

Подставим решение (8) в уравнения первой системы из (1) и продифференцируем по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

      x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ =ξ χ v 1 ,(αx+ x ¯ (y)) ξ ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ η + ρ ¯ η =x χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafqOVdGNbaebacqGHRaWkcaaIOaGabmiEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiaadIhacqGHRaWkceWG5bGbaebacaaINa GaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTzaaraGaaGypaiabe67a 4jabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcacaaMf8 UaaGikaiabeg7aHjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaamyE aiaaiMcacaaIPaGafqOVdGNbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRmaabmaabaWaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabeaa caaIYaaaaaGcbaGaaGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4kaS IabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMha gaqeaiaaiIcacaWG5bGaaGykaaGaayjkaiaawMcaaiqbeY7aTzaara WaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHbpGCgaqeamaaBaaa leaacqaH3oaAaeqaaOGaaGypaiaadIhacqaHhpWydaqhaaWcbaGaam ODaaqaaiaaigdaaaGccaaISaaaaa@7CFE@

x ¯ '(y) η ¯ +( x ¯ '(y)x+ y ¯ '(y)) ν ¯ =ξ χ v 1 ,(αx+ x ¯ (y)) η ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) ν ¯ η + τ ¯ η =x χ v 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafq4TdGMbaebacqGHRaWkcaaIOaGabmiEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiaadIhacqGHRaWkceWG5bGbaebacaaINa GaaGikaiaadMhacaaIPaGaaGykaiqbe27aUzaaraGaaGypaiabe67a 4jabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcacaaMf8 UaaGikaiabeg7aHjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaamyE aiaaiMcacaaIPaGafq4TdGMbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRmaabmaabaWaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabeaa caaIYaaaaaGcbaGaaGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4kaS IabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMha gaqeaiaaiIcacaWG5bGaaGykaaGaayjkaiaawMcaaiqbe27aUzaara WaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHepaDgaqeamaaBaaa leaacqaH3oaAaeqaaOGaaGypaiaadIhacqaHhpWydaqhaaWcbaGaam ODaaqaaiaaigdaaaGccaaIUaaaaa@7CDB@

откуда следуют соотношения

x( x ¯ '(y) ξ ¯ + x ¯ '(y)x μ ¯ + y ¯ '(y) μ ¯ )=ξ (αx+ x ¯ (y)) ξ ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ η + ρ ¯ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeaiabgUcaRiqadIhagaqe aiaaiEcacaaIOaGaamyEaiaaiMcacaWG4bGafqiVd0MbaebacqGHRa WkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqiVd0Mbaeba caaIPaGaaGypaiabe67a4naabmaabaGaaGikaiabeg7aHjaadIhacq GHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafqOVdGNb aebadaWgaaWcbaGaeq4TdGgabeaakiabgUcaRmaabmaabaWaaSaaae aacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaa cqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaGikaiaadM hacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aaGaayjkaiaawMcaaiqbeY7aTzaaraWaaSbaaSqaaiabeE7aObqaba GccqGHRaWkcuaHbpGCgaqeamaaBaaaleaacqaH3oaAaeqaaaGccaGL OaGaayzkaaGaaGilaaaa@7602@

x( x ¯ '(y) η ¯ + x ¯ '(y)x ν ¯ + y ¯ '(y) ν ¯ )=ξ (αx+ x ¯ (y)) η ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) ν ¯ η + τ ¯ η . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH3oaAgaqeaiabgUcaRiqadIhagaqe aiaaiEcacaaIOaGaamyEaiaaiMcacaWG4bGafqyVd4MbaebacqGHRa WkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqyVd4Mbaeba caaIPaGaaGypaiabe67a4naabmaabaGaaGikaiabeg7aHjaadIhacq GHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafq4TdGMb aebadaWgaaWcbaGaeq4TdGgabeaakiabgUcaRmaabmaabaWaaSaaae aacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaa cqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaGikaiaadM hacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aaGaayjkaiaawMcaaiqbe27aUzaaraWaaSbaaSqaaiabeE7aObqaba GccqGHRaWkcuaHepaDgaqeamaaBaaaleaacqaH3oaAaeqaaaGccaGL OaGaayzkaaGaaGOlaaaa@75E1@

Сравнивая коэффициенты при x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaa aa@33A7@  и x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , получаем:

        x ¯ '(y)= αξ μ ¯ η 2 μ ¯ =αp, x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ =αξ ξ ¯ η +ξ x ¯ (y) μ ¯ η +γ μ ¯ η , x ¯ (y) ξ ¯ η + y ¯ (y) μ ¯ η + ρ ¯ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypamaalaaabaGaeqySdeMaeqOVdGNafqiVd0Mbaeba daWgaaWcbaGaeq4TdGgabeaaaOqaaiaaikdacuaH8oqBgaqeaaaaca aI9aGaeqySdeMaamiCaiaaiYcacaaMf8UabmiEayaaraGaaG4jaiaa iIcacaWG5bGaaGykaiqbe67a4zaaraGaey4kaSIabmyEayaaraGaaG 4jaiaaiIcacaWG5bGaaGykaiqbeY7aTzaaraGaaGypaiabeg7aHjab e67a4jqbe67a4zaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcq aH+oaEceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH8oqBgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSIaeq4SdCMafqiVd0Mbaebada WgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UabmiEayaaraGaaGik aiaadMhacaaIPaGafqOVdGNbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGykaiqbeY7aTzaaraWa aSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHbpGCgaqeamaaBaaale aacqaH3oaAaeqaaOGaaGypaiaaicdacaaISaaaaa@831D@

x ¯ '(y)= αξ ν ¯ η 2 ν ¯ =αp, x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ =αξ η ¯ η +ξ x ¯ (y) ν ¯ η +γ ν ¯ η , x ¯ (y) η ¯ η + y ¯ (y) ν ¯ η + τ ¯ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypamaalaaabaGaeqySdeMaeqOVdGNafqyVd4Mbaeba daWgaaWcbaGaeq4TdGgabeaaaOqaaiaaikdacuaH9oGBgaqeaaaaca aI9aGaeqySdeMaamiCaiaaiYcacaaMf8UabmiEayaaraGaaG4jaiaa iIcacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGaaG 4jaiaaiIcacaWG5bGaaGykaiqbe27aUzaaraGaaGypaiabeg7aHjab e67a4jqbeE7aOzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcq aH+oaEceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH9oGBgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSIaeq4SdCMafqyVd4Mbaebada WgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UabmiEayaaraGaaGik aiaadMhacaaIPaGafq4TdGMbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGykaiqbe27aUzaaraWa aSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHepaDgaqeamaaBaaale aacqaH3oaAaeqaaOGaaGypaiaaicdacaaISaaaaa@82E9@

со следующим решением:

                                  x ¯ (y)=αpy+b, y ¯ (y)= α 2 p 2 y 2 +δy+c, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaeqySdeMaamiCaiaadMhacqGHRaWkcaWGIbGaaGilaiaa ywW7ceWG5bGbaebacaaIOaGaamyEaiaaiMcacaaI9aGaeqySde2aaW baaSqabeaacaaIYaaaaOGaamiCamaaCaaaleqabaGaaGOmaaaakiaa dMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH0oazcaWG5bGaey 4kaSIaam4yaiaaiYcaaaa@4E4F@

которым дополним выражения (8):

                 x ¯ =αx+αpy+b, y ¯ = α x 2 2 +αpxy+ α 2 p 2 y 2 +γx+δy+bx+c. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGaeqySdeMaam iEaiabgUcaRiabeg7aHjaadchacaWG5bGaey4kaSIaamOyaiaaiYca caaMf8UabmyEayaaraGaaGypamaalaaabaGaeqySdeMaamiEamaaCa aaleqabaGaaGOmaaaaaOqaaiaaikdaaaGaey4kaSIaeqySdeMaamiC aiaadIhacaWG5bGaey4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaO GaamiCamaaCaaaleqabaGaaGOmaaaakiaadMhadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcqaHZoWzcaWG4bGaey4kaSIaeqiTdqMaamyEai abgUcaRiaadkgacaWG4bGaey4kaSIaam4yaiaai6caaaa@5E03@

Следовательно,

(αpy+b) ξ ¯ η +( α 2 p 2 y 2 +δy+c) μ ¯ η + ρ ¯ η =0,(αpy+b) η ¯ η +( α 2 p 2 y 2 +δy+c) ν ¯ η + τ ¯ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqySdeMaamiCaiaadMhacq GHRaWkcaWGIbGaaGykaiqbe67a4zaaraWaaSbaaSqaaiabeE7aObqa baGccqGHRaWkcaaIOaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaam iCamaaCaaaleqabaGaaGOmaaaakiaadMhadaahaaWcbeqaaiaaikda aaGccqGHRaWkcqaH0oazcaWG5bGaey4kaSIaam4yaiaaiMcacuaH8o qBgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIafqyWdiNbaeba daWgaaWcbaGaeq4TdGgabeaakiaai2dacaaIWaGaaGilaiaaywW7ca aIOaGaeqySdeMaamiCaiaadMhacqGHRaWkcaWGIbGaaGykaiqbeE7a OzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcaaIOaGaeqySde 2aaWbaaSqabeaacaaIYaaaaOGaamiCamaaCaaaleqabaGaaGOmaaaa kiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH0oazcaWG5b Gaey4kaSIaam4yaiaaiMcacuaH9oGBgaqeamaaBaaaleaacqaH3oaA aeqaaOGaey4kaSIafqiXdqNbaebadaWgaaWcbaGaeq4TdGgabeaaki aai2dacaaIWaGaaGilaaaa@7941@

то есть αp=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaWGWbGaaGypaiaaicdaaa a@35D6@ . Согласно первому неравенству в (2) будем иметь α0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHGjsUcaaIWaaaaa@35E1@ , p=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiaaicdaaaa@3437@ . Значит,

     x ¯ =αx+b, y ¯ = α x 2 2 +γx+δy+bx+c,δ= αξ ξ ¯ η μ ¯ = αξ η ¯ η ν ¯ 0, μ ¯ η = ν ¯ η =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGaeqySdeMaam iEaiabgUcaRiaadkgacaaISaGaaGzbVlqadMhagaqeaiaai2dadaWc aaqaaiabeg7aHjaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYa aaaiabgUcaRiabeo7aNjaadIhacqGHRaWkcqaH0oazcaWG5bGaey4k aSIaamOyaiaadIhacqGHRaWkcaWGJbGaaGilaiaaywW7cqaH0oazca aI9aWaaSaaaeaacqaHXoqycqaH+oaEcuaH+oaEgaqeamaaBaaaleaa cqaH3oaAaeqaaaGcbaGafqiVd0MbaebaaaGaaGypamaalaaabaGaeq ySdeMaeqOVdGNafq4TdGMbaebadaWgaaWcbaGaeq4TdGgabeaaaOqa aiqbe27aUzaaraaaaiabgcMi5kaaicdacaaISaGaaGzbVlqbeY7aTz aaraWaaSbaaSqaaiabeE7aObqabaGccaaI9aGafqyVd4MbaebadaWg aaWcbaGaeq4TdGgabeaakiaai2dacaaIWaGaaGOlaaaa@729C@          (17)

Подставляя найденное в выше полученные выражения, содержащие χ v 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaigdaaaaaaa@355B@ , будем иметь

                                                       χ v 1 =α ξ ¯ η =α η ¯ η ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaigdaaaGccaaI9aGaeqySdeMafqOVdGNbaebadaWgaaWcbaGaeq4T dGgabeaakiaai2dacqaHXoqycuaH3oaAgaqeamaaBaaaleaacqaH3o aAaeqaaOGaaG4oaaaa@4259@

следовательно, ξ ¯ η = η ¯ η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqeamaaBaaaleaacqaH3o aAaeqaaOGaaGypaiqbeE7aOzaaraWaaSbaaSqaaiabeE7aObqabaaa aa@39E1@ . Учитывая выражения для δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@ , получаем μ ¯ = ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqeaiaai2dacuaH9oGBga qeaaaa@3626@ , поэтому во втором соотношении из (2) имеем =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFHw YvcaaI9aGaaGimaaaa@397F@ , что недопустимо.

Подставим теперь решение (8) в первое уравнение второй системы из (1) и продифференцируем их по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ :

α ξ ¯ +(αx+γ+ x ¯ (y)) μ ¯ =ξ χ u 1 ,(αx+ x ¯ (y)) ξ ¯ ξ + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ ξ + ρ ¯ ξ =x χ u 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycuaH+oaEgaqeaiabgUcaRi aaiIcacqaHXoqycaWG4bGaey4kaSIaeq4SdCMaey4kaSIabmiEayaa raGaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTzaaraGaaGypaiabe6 7a4jabeE8aJnaaDaaaleaacaWG1baabaGaaGymaaaakiaaiYcacaaM f8UaaGikaiabeg7aHjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaam yEaiaaiMcacaaIPaGafqOVdGNbaebadaWgaaWcbaGaeqOVdGhabeaa kiabgUcaRmaabmaabaWaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4k aSIabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadM hagaqeaiaaiIcacaWG5bGaaGykaaGaayjkaiaawMcaaiqbeY7aTzaa raWaaSbaaSqaaiabe67a4bqabaGccqGHRaWkcuaHbpGCgaqeamaaBa aaleaacqaH+oaEaeqaaOGaaGypaiaadIhacqaHhpWydaqhaaWcbaGa amyDaaqaaiaaigdaaaGccaaISaaaaa@7A04@

откуда следуют соотношения

x(α ξ ¯ +(αx+γ+ x ¯ (y)) μ ¯ )=ξ (αx+ x ¯ (y)) ξ ¯ ξ + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ ξ + ρ ¯ ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiabeg7aHjqbe67a4z aaraGaey4kaSIaaGikaiabeg7aHjaadIhacqGHRaWkcqaHZoWzcqGH RaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafqiVd0Mbae bacaaIPaGaaGypaiabe67a4naabmaabaGaaGikaiabeg7aHjaadIha cqGHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafqOVdG NbaebadaWgaaWcbaGaeqOVdGhabeaakiabgUcaRmaabmaabaWaaSaa aeaacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaa aacqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaGikaiaa dMhacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaG ykaaGaayjkaiaawMcaaiqbeY7aTzaaraWaaSbaaSqaaiabe67a4bqa baGccqGHRaWkcuaHbpGCgaqeamaaBaaaleaacqaH+oaEaeqaaaGcca GLOaGaayzkaaGaaGOlaaaa@72A3@

Сравнивая коэффициенты при x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaa aa@33A7@  и x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , получаем равенства

2α μ ¯ =αξ μ ¯ ξ ,α ξ ¯ +(γ+ x ¯ (y)) μ ¯ =αξ ξ ¯ ξ +ξ(γ+ x ¯ (y)) μ ¯ ξ , x ¯ (y) ξ ¯ ξ + y ¯ (y) μ ¯ ξ + ρ ¯ ξ =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaeqySdeMafqiVd0Mbaebaca aI9aGaeqySdeMaeqOVdGNafqiVd0MbaebadaWgaaWcbaGaeqOVdGha beaakiaaiYcacaaMf8UaeqySdeMafqOVdGNbaebacqGHRaWkcaaIOa Gaeq4SdCMaey4kaSIabmiEayaaraGaaGikaiaadMhacaaIPaGaaGyk aiqbeY7aTzaaraGaaGypaiabeg7aHjabe67a4jqbe67a4zaaraWaaS baaSqaaiabe67a4bqabaGccqGHRaWkcqaH+oaEcaaIOaGaeq4SdCMa ey4kaSIabmiEayaaraGaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTz aaraWaaSbaaSqaaiabe67a4bqabaGccaaISaGaaGzbVlqadIhagaqe aiaaiIcacaWG5bGaaGykaiqbe67a4zaaraWaaSbaaSqaaiabe67a4b qabaGccqGHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacuaH8oqB gaqeamaaBaaaleaacqaH+oaEaeqaaOGaey4kaSIafqyWdiNbaebada WgaaWcbaGaeqOVdGhabeaakiaai2dacaaIWaGaaGOlaaaa@7C1B@

Пусть α0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHGjsUcaaIWaaaaa@35E1@ ; тогда μ ¯ ξ =2 μ ¯ /ξ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqeamaaBaaaleaacqaH+o aEaeqaaOGaaGypaiaaikdacuaH8oqBgaqeaiaai+cacqaH+oaEcqGH GjsUcaaIWaaaaa@3DD6@ . Затем, дифференцируя второе и третье равенства по y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , будем иметь x ¯ '(y)= y ¯ '(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiqadMhagaqeaiaaiEcacaaIOaGaamyEaiaaiMca caaI9aGaaGimaaaa@3C5C@ , что противоречит первому неравенству из (2). Поэтому α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI9aGaaGimaaaa@34E1@  и тогда, согласно (2),

                                                  x ¯ '(y)0, μ ¯ ξ = μ ¯ ξ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaeyiyIKRaaGimaiaaiYcacaaMf8UafqiVd0MbaebadaWg aaWcbaGaeqOVdGhabeaakiaai2dadaWcaaqaaiqbeY7aTzaaraaaba GaeqOVdGhaaiabgcMi5kaaicdacaaIUaaaaa@4617@

Подставим теперь решение (8) в первое уравнение второй системы из (1) и продифференцируем их по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

      x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ =η χ v 1 , x ¯ (y) ξ ¯ η +(γx+ x ¯ (y)x+ y ¯ (y)) μ ¯ η + ρ ¯ η =y χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafqOVdGNbaebacqGHRaWkcaaIOaGabmiEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiaadIhacqGHRaWkceWG5bGbaebacaaINa GaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTzaaraGaaGypaiabeE7a OjabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcacaaMf8 UabmiEayaaraGaaGikaiaadMhacaaIPaGafqOVdGNbaebadaWgaaWc baGaeq4TdGgabeaakiabgUcaRiaaiIcacqaHZoWzcaWG4bGaey4kaS IabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMha gaqeaiaaiIcacaWG5bGaaGykaiaaiMcacuaH8oqBgaqeamaaBaaale aacqaH3oaAaeqaaOGaey4kaSIafqyWdiNbaebadaWgaaWcbaGaeq4T dGgabeaakiaai2dacaWG5bGaeq4Xdm2aa0baaSqaaiaadAhaaeaaca aIXaaaaOGaaGilaaaa@72A4@

поэтому

           y( x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ )=η( x ¯ (y) ξ ¯ η +(γx+ x ¯ (y)x+ y ¯ (y)) μ ¯ η + ρ ¯ η ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeaiabgUcaRiaaiIcaceWG 4bGbaebacaaINaGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadM hagaqeaiaaiEcacaaIOaGaamyEaiaaiMcacaaIPaGafqiVd0Mbaeba caaIPaGaaGypaiabeE7aOjaaiIcaceWG4bGbaebacaaIOaGaamyEai aaiMcacuaH+oaEgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIa aGikaiabeo7aNjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaamyEai aaiMcacaWG4bGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGa aGykaiqbeY7aTzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcu aHbpGCgaqeamaaBaaaleaacqaH3oaAaeqaaOGaaGykaiaai6caaaa@6B1D@

Сравнивая коэффициенты, получаем

         y x ¯ '(y) μ ¯ =η(γ+ x ¯ (y)) μ ¯ η ,y( x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ )=η( x ¯ (y) ξ ¯ η + y ¯ (y) μ ¯ η + ρ ¯ η ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiqbeY7aTzaaraGaaGypaiabeE7aOjaaiIcacqaH ZoWzcqGHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafq iVd0MbaebadaWgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UaamyE aiaaiIcaceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqOVdG NbaebacqGHRaWkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGa fqiVd0MbaebacaaIPaGaaGypaiabeE7aOjaaiIcaceWG4bGbaebaca aIOaGaamyEaiaaiMcacuaH+oaEgaqeamaaBaaaleaacqaH3oaAaeqa aOGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqiVd0Mbae badaWgaaWcbaGaeq4TdGgabeaakiabgUcaRiqbeg8aYzaaraWaaSba aSqaaiabeE7aObqabaGccaaIPaGaaGOlaaaa@7030@

Решая первое уравнение, получаем

                                            x ¯ (y)=γ+ y c ,c= η μ ¯ η μ ¯ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaeyOeI0Iaeq4SdCMaey4kaSIaamyEamaaCaaaleqabaGa am4yaaaakiaaiYcacaaMf8Uaam4yaiaai2dadaWcaaqaaiabeE7aOj qbeY7aTzaaraWaaSbaaSqaaiabeE7aObqabaaakeaacuaH8oqBgaqe aaaacqGHGjsUcaaIWaGaaGOlaaaa@49F9@

Подставляя найденное в первое равенство, содержащее χ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaaaaa@355A@ , получаем χ u 1 = y c μ ¯ /ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaGccaaI9aGaamyEamaaCaaaleqabaGaam4yaaaakiqbeY7a TzaaraGaaG4laiabe67a4baa@3C92@ . Согласно построениям должно быть χ u 1 =φ(u,v,ρ,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaGccaaI9aGaeqOXdOMaaGikaiaadwhacaaISaGaamODaiaa iYcacqaHbpGCcaaISaGaeqiXdqNaaGykaaaa@40E9@ . Приравнивая правые части, дифференцируя по y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и сравнивая результаты, получаем μ ¯ =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqeaiaai2dacaaIWaaaaa@3510@ , что недопустимо.

Подставляя решение (8) в уравнения третьей системы из (1), после чего дифференцируя по всем переменным и рассуждая как выше, приходим к противоречию.

Случаи 2, 3.1, 3.2, 4.1, 4.2, 4.3 и 5 дают отрицательный результат. Теорема доказана.

×

About the authors

V. A. Kyrov

Gorno-Altaisk State University

Author for correspondence.
Email: kyrovVA@yandex.ru
Russian Federation, Republic of Altai

References

  1. Богданова Р. А., Михайличенко Г. Г. Последовательное по рангу (n+1,2)' target='_blank'>http://www.w3.org/1998/Math/MathML">(n+1,2) вложение двуметрических феноменологически симметричных геометрий двух множеств Изв. вузов. Мат. 2020 6 9–14
  2. Кострикин А. И. Введение в алгебру М. Наука 1977
  3. Кыров В. А. О вложении двуметрических феноменологически симметричных геометрий Вестн. Томск. гос. ун-та. Мат. мех. 2018 56 5–16
  4. Кыров В. А. Гиперкомплексные числа в некоторых геометриях двух множеств, II Изв. вузов. Мат. 2020 7 39–54
  5. Кыров В. А., Михайличенко Г. Г. Невырожденные канонические решения одной системы функциональных уравнений Изв. вузов. Мат. 2021 8 46–55
  6. Михайличенко Г. Г. Двуметрические физические структуры ранга (n+1,2)' target='_blank'>http://www.w3.org/1998/Math/MathML">(n+1,2) Сиб. мат. ж. 1993 34 3 132–143
  7. Михайличенко Г. Г. Групповая симметрия физических структур Барнаул Барнаул. гос. пед. ун-т 2003
  8. Михайличенко Г. Г., Кыров В. А. Гиперкомплексные числа в некоторых геометриях двух множеств, I Изв. вузов. Мат.. 2017 7 19–29
  9. Kyrov V. A. Commutative hypercomplex numbers and the geometry of two sets Ж. СФУ. Сер. Мат. физ. 2020 13 3 373–382

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Кыров В.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».