Optimization of thermal processes in a nonlocal problem with a redefinition function under an integral condition

Cover Page

Cite item

Full Text

Abstract

In this paper, we examine the weak generalized solvability of an inverse optimization problem for the heat equation with a nonlocal boundary condition and a nonlinear target performance. We formulate necessary optimality conditions and reduce the search for a control function to a functional integral equation.

Full Text

1 Введение

Некоторые задачи математического моделирования тепловых процессов часто приводят к рассмотрению нелокальных обратных задач для параболических уравнений. Теория обратных задач - один из современных и важнейших разделов дифференциальных уравнений математической физики. Нелокальные задачи с условиями интегрального вида встречаются при математическом моделировании явлений различной природы, когда граница области протекания процесса недоступна для прямых измерений. Примером могут служить некоторые задачи изучения процессов распространения тепла. Теория оптимального управления динамическими системами широко используется при решении различных задач науки, техники и экономики. В теории оптимального управления разрабатаны и эффективно используются различные аналитические и приближенные методы (см., например, [2-5, 7, 9, 10, 15-17]). В [6] рассматривается широкий класс нелинейных стационарных систем обыкновенных дифференциальных уравнений. В [1] рассматриваются линейные эллиптические уравнения с коэффициентами, зависящими от функции управления и ее градиента, и изучается задача оптимального управления.

В данной работе рассматриваются вопросы обобщенного решения нелокальной обратной задачи оптимизации процессом распространения тепла по стержню конечной длины с квадратичным критерием оптимальности. При помощи принципа максимума формулируются необходимые условия оптимальности и вычисляется управляющая функция. Рассмотрим следующее уравнение распространения тепла по стержню конечной длины:

                                u(t,x) t ν 2 u(t,x) x 2 =f(x,p(t)),(t,x)Ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhacaaIOa GaamiDaiaaiYcacaWG4bGaaGykaaqaaiabgkGi2kaadshaaaGaeyOe I0IaeqyVd42aaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcca WG1bGaaGikaiaadshacaaISaGaamiEaiaaiMcaaeaacqGHciITcaWG 4bWaaWbaaSqabeaacaaIYaaaaaaakiaai2dacaWGMbGaaGikaiaadI hacaaISaGaamiCaiaaiIcacaWG0bGaaGykaiaaiMcacaaISaGaaGzb VlaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaeyicI4SaeuyQdCLaaG ilaaaa@5A4A@                                       (1)

с интегральным условием

                                               0 T u(t,x)dt=φ(x),x Ω l , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWG1bGaaGikaiaadshacaaISaGaamiEaiaaiMca caWGKbGaamiDaiaai2dacqaHgpGAcaaIOaGaamiEaiaaiMcacaaISa GaaGzbVlaadIhacqGHiiIZcqqHPoWvdaWgaaWcbaGaamiBaaqabaGc caaISaaaaa@49CB@                                                      (2)

и граничными условиями Дирихле

                                              u(t,0)=u(t,l)=0,t Ω T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaaG imaiaaiMcacaaI9aGaamyDaiaaiIcacaWG0bGaaGilaiaadYgacaaI PaGaaGypaiaaicdacaaISaGaaGzbVlaadshacqGHiiIZcqqHPoWvda WgaaWcbaGaamivaaqabaGccaaISaaaaa@45E4@                                                     (3)

где f(x,p)C( Ω l ×ϒ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iCaiaaiMcacqGHiiIZcaWGdbGaaGikaiabfM6axnaaBaaaleaacaWG SbaabeaakiabgEna0kabfk9aHkaaiMcaaaa@4137@  - функция внешнего источника, p(t)C( Ω T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaGaey icI4Saam4qaiaaiIcacqqHPoWvdaWgaaWcbaGaamivaaqabaGccaaI Paaaaa@3B62@  - функция управления, u(t,x)C(Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacqGHiiIZcaWGdbGaaGikaiabfM6axjaaiMcaaaa@3C0B@  - функция состояния, φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@  - функция переопределения распределения тепла вдоль стержня, φ(0)=φ(l)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaaGimaiaaiMcaca aI9aGaeqOXdOMaaGikaiaadYgacaaIPaGaaGypaiaaicdaaaa@3BF8@ , ν>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI+aGaaGimaaaa@34FB@  - действительный параметр, φ(x) L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabfM6axnaa BaaaleaacaWGSbaabeaakiaaiMcaaaa@3D41@ , ϒ[0, M * ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOcqGHHjIUcaaIBbGaaGimai aaiYcacaWGnbWaaWbaaSqabeaacaaIQaaaaOGaaGyxaaaa@3A84@ , 0< M * < MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaad2eadaahaaWcbe qaaiaaiQcaaaGccaaI8aGaeyOhIukaaa@3735@ , Ω Ω T × Ω l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcqGHHjIUcqqHPoWvdaWgaa WcbaGaamivaaqabaGccqGHxdaTcqqHPoWvdaWgaaWcbaGaamiBaaqa baaaaa@3C77@ , Ω T [0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaaqaba GccqGHHjIUcaaIBbGaaGimaiaaiYcacaWGubGaaGyxaaaa@3A3C@ , Ω l [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamiBaaqaba GccqGHHjIUcaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaaa@3A6C@ , 0<T< MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadsfacaaI8aGaey OhIukaaa@3651@ , 0<l< MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadYgacaaI8aGaey OhIukaaa@3669@ .

Для определения функции переопределения φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@  задано следующее промежуточное условие:

                                                 u( t 1 ,x)=ψ(x),x Ω l , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshadaWgaaWcba GaaGymaaqabaGccaaISaGaamiEaiaaiMcacaaI9aGaeqiYdKNaaGik aiaadIhacaaIPaGaaGilaiaaywW7caWG4bGaeyicI4SaeuyQdC1aaS baaSqaaiaadYgaaeqaaOGaaGilaaaa@44E4@                                                        (4)

где 0< t 1 <T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadshadaWgaaWcba GaaGymaaqabaGccaaI8aGaamivaaaa@36CA@ , ψ(x) L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabfM6axnaa BaaaleaacaWGSbaabeaakiaaiMcaaaa@3D52@ .

В данной работе рассматривается нелокальная задача нелинейного оптимального управления, где интегральное условие (2) моделирует ситуации, когда либо объект исследования в обратной задаче принципиально недоступен для измерения, либо проведение такого измерения дорого. Функция φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@  в условии (2) также неизвестна. Исходя из практического применения, возникает необходимость использования дополнительного условия (4) с промежуточным значением по времени. Сформулированы необходимые условия оптимальности на основе принципа максимума, вычислены функция управления и функция состояния.

В обратной задаче оптимального управления (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (4) требуется найти тройку неизвестных функций:

                               {u(t,x) H ¯ u (Ω),φ(x) L 2 ( Ω l ),p(t)C( Ω T )}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyDaiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaGaeyicI4SabmisayaaraWaaSbaaSqaaiaadwha aeqaaOGaaGikaiabfM6axjaaiMcacaaISaGaaGjbVlabeA8aQjaaiI cacaWG4bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGc caaIOaGaeuyQdC1aaSbaaSqaaiaadYgaaeqaaOGaaGykaiaaiYcaca aMe8UaamiCaiaaiIcacaWG0bGaaGykaiabgIGiolaadoeacaaMi8Ua aGikaiabfM6axnaaBaaaleaacaWGubaabeaakiaaiMcacaaI9bGaaG Olaaaa@5B54@

Для решения уравнения (1) применяем метод рядов Фурье

                                                   u(t,x)= n=1 u n (t) b n (x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaa cqGHEisPa0GaeyyeIuoakiaadwhadaWgaaWcbaGaamOBaaqabaGcca aIOaGaamiDaiaaiMcacaaMi8UaamOyamaaBaaaleaacaWGUbaabeaa kiaaiIcacaWG4bGaaGykaiaaiYcaaaa@4900@                                                         (5)

где функции b n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaIPaaaaa@3633@  являются собственными функциями спектральной задачи

                                 b (x)+ λ 2 b(x)=0,b(0)=b(l)=0,0<λ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbauGbauaacaaIOaGaamiEai aaiMcacqGHRaWkcqaH7oaBdaahaaWcbeqaaiaaikdaaaGccaaMi8Ua amOyaiaaiIcacaWG4bGaaGykaiaai2dacaaIWaGaaGilaiaaywW7ca WGIbGaaGikaiaaicdacaaIPaGaaGypaiaadkgacaaIOaGaamiBaiaa iMcacaaI9aGaaGimaiaaiYcacaaMf8UaaGimaiaaiYdacqaH7oaBca aISaaaaa@5002@

и образуют полную систему ортонормированных функций { b n (x)} n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamOyamaaBaaaleaacaWGUb aabeaakiaaiIcacaWG4bGaaGykaiaai2hadaqhaaWcbaGaamOBaiaa i2dacaaIXaaabaGaeyOhIukaaaaa@3C52@  в пространстве L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiabfM6axnaaBaaaleaacaWGSbaabeaakiaaiMcaaaa@379E@ , а λ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaamOBaaqaba aaaa@3494@  - соответствующие собственные числа, n=1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacaaIZaGaaGilaiablAcilbaa@38F3@ .

Предположим, что и следующие функции тоже разлагаются в ряд Фурье по функциям b n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaIPaaaaa@3633@ :

                                f(x,p(t))= n=1 f n (p) b n (x),φ(x)= n=1 φ n b n (x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iCaiaaiIcacaWG0bGaaGykaiaaiMcacaaI9aWaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadAgadaWgaa WcbaGaamOBaaqabaGccaaIOaGaamiCaiaaiMcacaaMi8UaamOyamaa BaaaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGykaiaaiYcacqaHgp GAcaaIOaGaamiEaiaaiMcacaaI9aWaaabCaeqaleaacaWGUbGaaGyp aiaaigdaaeaacqGHEisPa0GaeyyeIuoakiabeA8aQnaaBaaaleaaca WGUbaabeaakiaayIW7caWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGik aiaadIhacaaIPaGaaGilaaaa@5FF0@                                       (6)

где

                             f n (p)= 0 l f(y,p(t)) b n (y)dy, φ n = 0 l φ(y) b n (y)dy. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadchacaaIPaGaaGypamaapehabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiYcacaWGWbGaaG ikaiaadshacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqaaiaad6ga aeqaaOGaaGikaiaadMhacaaIPaGaaGjcVlaadsgacaWG5bGaaGilai aaywW7cqaHgpGAdaWgaaWcbaGaamOBaaqabaGccaaI9aWaa8qCaeqa leaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaeqOXdOMaaGikaiaadM hacaaIPaGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGa amyEaiaaiMcacaaMi8UaamizaiaadMhacaaIUaaaaa@644C@  

Задача  Найти функцию переопределения φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@ , функцию управления

                                            p(t){p:|p(t)| M * ,t Ω T } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaGaey icI4SaaG4EaiaadchacaaI6aGaaGiFaiaadchacaaIOaGaamiDaiaa iMcacaaI8bGaeyizImQaamytamaaCaaaleqabaGaaGOkaaaakiaaiY cacaaMe8UaamiDaiabgIGiolabfM6axnaaBaaaleaacaWGubaabeaa kiaai2haaaa@4A8B@

и функцию состояния u(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcaaaa@36CC@ , которые доставляют минимум функционалу

                                    J[p]= 0 l [u(T,y)ξ(y)] 2 dy+α 0 T p 2 (t)dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaG4waiaadchacaaIDbGaaG ypamaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfa caWG1bGaaGikaiaadsfacaaISaGaamyEaiaaiMcacqGHsislcqaH+o aEcaaIOaGaamyEaiaaiMcacaaIDbWaaWbaaSqabeaacaaIYaaaaOGa amizaiaadMhacqGHRaWkcqaHXoqydaWdXbqabSqaaiaaicdaaeaaca WGubaaniabgUIiYdGccaWGWbWaaWbaaSqabeaacaaIYaaaaOGaaGik aiaadshacaaIPaGaaGjcVlaadsgacaWG0bGaaGilaaaa@57D3@                                           (7)

где ξ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaIOaGaamiEaiaaiMcaaa a@35E6@  - такая непрерывная функция, что

                                     ξ(x)= n=1 ξ n b n (x), ξ n = 0 l ξ(y) b n (y)dy, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaIOaGaamiEaiaaiMcaca aI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0Ga eyyeIuoakiabe67a4naaBaaaleaacaWGUbaabeaakiaayIW7caWGIb WaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGilaiaa ywW7cqaH+oaEdaWgaaWcbaGaamOBaaqabaGccaaI9aWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaeqOVdGNaaGikaiaadMha caaIPaGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaam yEaiaaiMcacaaMi8UaamizaiaadMhacaaISaaaaa@5E3D@

                                ξ(0)=ξ(l)=0, n=1 | ξ n |<,0<α=const. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaIOaGaaGimaiaaiMcaca aI9aGaeqOVdGNaaGikaiaadYgacaaIPaGaaGypaiaaicdacaaISaGa aGzbVpaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukani abggHiLdGccaaI8bGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaOGaaGiF aiaaiYdacqGHEisPcaaISaGaaGzbVlaaicdacaaI8aGaeqySdeMaaG ypaiaadogacaWGVbGaamOBaiaadohacaWG0bGaaGOlaaaa@574C@  

2 Обратная задача (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD5@ (4)

Рассмотрим пространства

             C ¯ u 1,2 (Ω)={u:u(t,x) C 1,2 (Ω),u(t,0)=u(t,l)=0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaebadaqhaaWcbaGaamyDaa qaaiaaigdacaaISaGaaGOmaaaakiaaiIcacqqHPoWvcaaIPaGaaGyp aiaaiUhacaWG1bGaaGOoaiaadwhacaaIOaGaamiDaiaaiYcacaWG4b GaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaigdacaaISaGaaGOm aaaakiaaiIcacqqHPoWvcaaIPaGaaGilaiaaysW7caWG1bGaaGikai aadshacaaISaGaaGimaiaaiMcacaaI9aGaamyDaiaaiIcacaWG0bGa aGilaiaadYgacaaIPaGaaGypaiaaicdacaaI9bGaaGilaaaa@5939@

             C ¯ Φ 1,2 (Ω)={Φ:Φ(t,x) C 1,2 (Ω),Φ(0,x)=0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaebadaqhaaWcbaGaeuOPdy eabaGaaGymaiaaiYcacaaIYaaaaOGaaGikaiabfM6axjaaiMcacaaI 9aGaaG4EaiabfA6agjaaiQdacqqHMoGrcaaIOaGaamiDaiaaiYcaca WG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaigdacaaISaGa aGOmaaaakiaaiIcacqqHPoWvcaaIPaGaaGilaiaaysW7cqqHMoGrca aIOaGaaGimaiaaiYcacaWG4bGaaGykaiaai2dacaaIWaGaaGyFaaaa @54C1@

(см. [8]) и их замыкания H ¯ u (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaWgaaWcbaGaamyDaa qabaGccaaIOaGaeuyQdCLaaGykaaaa@36C9@ , H ¯ Φ (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaWgaaWcbaGaeuOPdy eabeaakiaaiIcacqqHPoWvcaaIPaaaaa@3749@  по норме

                                          u H ¯ (Ω) = 0 T 0 l |u(t,y )| 2 dydt <. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGae8xjIa1aaSbaaSqaaiqadIeagaqeaiaaiIcacqqHPoWv caaIPaaabeaakiaai2dadaGcaaqaamaapehabeWcbaGaaGimaaqaai aadsfaa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Ga ey4kIipakiaaiYhacaWG1bGaaGikaiaadshacaaISaGaamyEaiaaiM cacaaI8bWaaWbaaSqabeaacaaIYaaaaOGaaGjcVlaadsgacaWG5bGa aGjcVlaadsgacaWG0baaleqaaOGaaGipaiabg6HiLkaai6caaaa@5893@

Определение Функция u(t,x) H ¯ u (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacqGHiiIZceWGibGbaebadaWgaaWcbaGaamyDaaqabaGc caaIOaGaeuyQdCLaaGykaaaa@3D58@  называется обобщенным решением нелокальной задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3), если эта функция почти всюду удовлетворяет дифференциальному уравнению (1) и условиям (2) и (3).

Рассмотрим также следующие известные банаховы пространства (см., например, [12-14]):

    (a).  пространство B 2 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadsfacaaIPaaaaa@35B8@  с нормой

                                         a(t) B 2 ( Ω T ) = n=1 max t Ω T | a n (t)| 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGHbGaaGikaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadkea daWgaaqaaiaaikdaaeqaaiaaiIcacqqHPoWvdaWgaaqaaiaadsfaae qaaiaaiMcaaeqaaOGaaGypamaakaaabaWaaabCaeqaleaacaWGUbGa aGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaabmaabaWaaybuae qaleaacaWG0bGaeyicI4SaeuyQdC1aaSbaaeaacaWGubaabeaaaeqa keaaciGGTbGaaiyyaiaacIhaaaGaaGiFaiaadggadaWgaaWcbaGaam OBaaqabaGccaaIOaGaamiDaiaaiMcacaaI8baacaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaaqabaGccaaI7aaaaa@5AC0@

    (b).  пространство l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWItecBdaWgaaWcbaGaaGOmaaqaba aaaa@33DA@  с нормой

                                                  φ l 2 = n=1 | φ n | 2 <; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHgpGAcqWFLicudaWgaaWcbaGaeS4eHW2aaSbaaeaacaaIYaaa beaaaeqaaOGaaGypamaakaaabaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakiaaiYhacqaHgpGAdaWgaaWc baGaamOBaaqabaGccaaI8bWaaWbaaSqabeaacaaIYaaaaaqabaGcca aI8aGaeyOhIuQaaG4oaaaa@4C80@

    (c).  пространство L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiabfM6axnaaBaaaleaacaWGSbaabeaakiaaiMcaaaa@379E@  с нормой

                                          ϑ(x) L 2 ( Ω l ) = 0 l |ϑ(x )| 2 dx <. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHrpGscaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamit amaaBaaabaGaaGOmaaqabaGaaGikaiabfM6axnaaBaaabaGaamiBaa qabaGaaGykaaqabaGccaaI9aWaaOaaaeaadaWdXbqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaaI8bGaeqy0dOKaaGikaiaadIhaca aIPaGaaGiFamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4baaleqa aOGaaGipaiabg6HiLkaai6caaaa@5370@

Используя определение обобщенного решения и ряды Фурье (5), (6) и учитывая, что функции b n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaIPaaaaa@3633@ образуют полную систему ортонормированных функций в L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiabfM6axnaaBaaaleaacaWGSbaabeaakiaaiMcaaaa@379E@ , из уравнения (1) приходим к следующей счетной системе обыкновенных дифференциальных уравнений первого порядка:

                              u n (t)+ λ n 2 ν u n (t)= f n (p(t)),где λ n 2 = nπ l 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbauaadaWgaaWcbaGaamOBaa qabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcqaH7oaBdaqhaaWcbaGa amOBaaqaaiaaikdaaaGccqaH9oGBcaaMi8UaamyDamaaBaaaleaaca WGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaWGMbWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadchacaaIOaGaamiDaiaaiMcacaaIPa GaaGilaiaaywW7caqGZqGaaeineiaabwdbcaaMf8Uaeq4UdW2aa0ba aSqaaiaad6gaaeaacaaIYaaaaOGaaGypamaadmaabaWaaSaaaeaaca WGUbGaeqiWdahabaGaamiBaaaaaiaawUfacaGLDbaadaahaaWcbeqa aiaaikdaaaGccaaIUaaaaa@5BD9@                                     (8)

Интегрируя счетную систему диффефренциальных уравнений (8) на интервале (0,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaWG0bGaaG ykaaaa@358F@ , получим

                             u n (t)= A n e λ n 2 νt + 0 t e λ n 2 ν(ts) 0 l f(y,p(s)) b n (y)dyds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadgeadaWgaaWcbaGaamOBaaqa baGccaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBdaqhaaqaaiaad6 gaaeaacaaIYaaaaiaayIW7cqaH9oGBcaaMi8UaamiDaaaakiabgUca RmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadwgada ahaaWcbeqaaiabgkHiTiabeU7aSnaaDaaabaGaamOBaaqaaiaaikda aaGaaGjcVlabe27aUjaayIW7caaIOaGaamiDaiabgkHiTiaadohaca aIPaaaaOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGa amOzaiaaiIcacaWG5bGaaGilaiaadchacaaIOaGaam4CaiaaiMcaca aIPaGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamyE aiaaiMcacaaMi8UaamizaiaadMhacaaMi8UaamizaiaadohacaaISa aaaa@7130@                                    (9)

где A n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaad6gaaeqaaa aa@33A6@  - неизвестный коэффициент интегрирования. Используя ряды Фурье (5) и (6), из интегрального условия (2) имеем

           φ n = 0 l φ(y) b n (y)dy= 0 l 0 T u(t,y)dt b n (y)dy= 0 T 0 l u(t,y) b n (y)dydt= 0 T u n (t)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOBaaqaba GccaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGa eqOXdOMaaGikaiaadMhacaaIPaGaaGjcVlaadkgadaWgaaWcbaGaam OBaaqabaGccaaIOaGaamyEaiaaiMcacaaMi8UaamizaiaadMhacaaI 9aWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOWaa8qCae qaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamyDaiaaiIcacaWG 0bGaaGilaiaadMhacaaIPaGaamizaiaadshacaaMi8UaamOyamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGa amyEaiaai2dadaWdXbqabSqaaiaaicdaaeaacaWGubaaniabgUIiYd GcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG1bGa aGikaiaadshacaaISaGaamyEaiaaiMcacaaMi8UaamOyamaaBaaale aacaWGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyE aiaayIW7caWGKbGaamiDaiaai2dadaWdXbqabSqaaiaaicdaaeaaca WGubaaniabgUIiYdGccaWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaGik aiaadshacaaIPaGaamizaiaadshacaaIUaaaaa@8751@                (10)

Для нахождения неизвестного коэффициента интегрирования A n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaad6gaaeqaaa aa@33A6@  воспользуемся условием (10):

             φ n = A n 0 T e λ n 2 νt dt+ 0 T 0 t e λ n 2 ν(ts) 0 l f(y,p(s)) b n (y)dydsdt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOBaaqaba GccaaI9aGaamyqamaaBaaaleaacaWGUbaabeaakmaapehabeWcbaGa aGimaaqaaiaadsfaa0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgk HiTiabeU7aSnaaDaaabaGaamOBaaqaaiaaikdaaaGaaGjcVlabe27a UjaayIW7caWG0baaaOGaamizaiaadshacqGHRaWkdaWdXbqabSqaai aaicdaaeaacaWGubaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaa caWG0baaniabgUIiYdGccaWGLbWaaWbaaSqabeaacqGHsislcqaH7o aBdaqhaaqaaiaad6gaaeaacaaIYaaaaiaayIW7cqaH9oGBcaaMi8Ua aGikaiaadshacqGHsislcaWGZbGaaGykaaaakmaapehabeWcbaGaaG imaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiYca caWGWbGaaGikaiaadohacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaS qaaiaad6gaaeqaaOGaaGikaiaadMhacaaIPaGaaGjcVlaadsgacaWG 5bGaaGjcVlaadsgacaWGZbGaaGjcVlaadsgacaWG0bGaaGypaaaa@7D09@

                               = A n λ n 2 ν G n (0)+ 1 λ n 2 ν 0 T G n (t) 0 l f(y,p(t)) b n (y)dydt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWGbbWaaSbaaS qaaiaad6gaaeqaaaGcbaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaI YaaaaOGaeqyVd4gaaiaayIW7caWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaaicdacaaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4U dW2aa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeqyVd4gaamaapehabe WcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiaadEeadaWgaaWcbaGa amOBaaqabaGccaaIOaGaamiDaiaaiMcadaWdXbqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadMhacaaISaGaamiC aiaaiIcacaWG0bGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaaca WGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyEaiaa yIW7caWGKbGaamiDaiaaiYcaaaa@67F2@

где G n (t)=1 e λ n 2 ν(Tt) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaaigdacqGHsislcaWGLbWaaWba aSqabeaacqGHsislcqaH7oaBdaqhaaqaaiaad6gaaeaacaaIYaaaai aayIW7cqaH9oGBcaaMi8UaaGikaiaadsfacqGHsislcaWG0bGaaGyk aaaaaaa@470A@ . Отсюда находим, что

                            A n = λ n 2 ν G n (0) φ n 1 G n (0) 0 T G n (t) 0 l f(y,p(t)) b n (y)dydt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIYaaa aOGaeqyVd4gabaGaam4ramaaBaaaleaacaWGUbaabeaakiaaiIcaca aIWaGaaGykaaaacaaMi8UaeqOXdO2aaSbaaSqaaiaad6gaaeqaaOGa eyOeI0YaaSaaaeaacaaIXaaabaGaam4ramaaBaaaleaacaWGUbaabe aakiaaiIcacaaIWaGaaGykaaaadaWdXbqabSqaaiaaicdaaeaacaWG ubaaniabgUIiYdGccaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaaGikai aadshacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8 aOGaamOzaiaaiIcacaWG5bGaaGilaiaadchacaaIOaGaamiDaiaaiM cacaaIPaGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGa amyEaiaaiMcacaaMi8UaamizaiaadMhacaaMi8Uaamizaiaadshaca aIUaaaaa@69A7@                                 (11)

Подставляя (11) в представление (9), получаем

                   u n (t)= φ n G n (0) λ n 2 ν e λ n 2 νt + 0 T K n (t,s) 0 l f(y,p(s)) b n (y)dyds, u(t,x)= n=1 b n (x){ φ n G n (0) λ n 2 ν e λ n 2 νt + 0 T K n (t,s) 0 l f(y,p(s)) b n (y)dyds}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaamyDamaaBaaale aacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaWcaaqaaiab eA8aQnaaBaaaleaacaWGUbaabeaaaOqaaiaadEeadaWgaaWcbaGaam OBaaqabaGccaaIOaGaaGimaiaaiMcaaaGaaGjcVpaalaaabaGaeq4U dW2aa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeqyVd4gabaGaamyzam aaCaaaleqabaGaeq4UdW2aa0baaeaacaWGUbaabaGaaGOmaaaacaaM i8UaeqyVd4MaaGjcVlaadshaaaaaaOGaey4kaSYaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOGaam4samaaBaaaleaacaWGUbaa beaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaWaa8qCaeqaleaaca aIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG5bGaaGil aiaadchacaaIOaGaam4CaiaaiMcacaaIPaGaaGjcVlaadkgadaWgaa WcbaGaamOBaaqabaGccaaIOaGaamyEaiaaiMcacaaMi8Uaamizaiaa dMhacaaMi8UaamizaiaadohacaaISaaabaGaamyDaiaaiIcacaWG0b GaaGilaiaadIhacaaIPaGaaGypamaaqahabeWcbaGaamOBaiaai2da caaIXaaabaGaeyOhIukaniabggHiLdGccaWGIbWaaSbaaSqaaiaad6 gaaeqaaOGaaGikaiaadIhacaaIPaGaaG4EamaalaaabaGaeqOXdO2a aSbaaSqaaiaad6gaaeqaaaGcbaGaam4ramaaBaaaleaacaWGUbaabe aakiaaiIcacaaIWaGaaGykaaaacaaMi8+aaSaaaeaacqaH7oaBdaqh aaWcbaGaamOBaaqaaiaaikdaaaGccqaH9oGBaeaacaWGLbWaaWbaaS qabeaacqaH7oaBdaqhaaqaaiaad6gaaeaacaaIYaaaaiabe27aUjaa yIW7caWG0baaaaaakiabgUcaRmaapehabeWcbaGaaGimaaqaaiaads faa0Gaey4kIipakiaadUeadaWgaaWcbaGaamOBaaqabaGccaaIOaGa amiDaiaaiYcacaWGZbGaaGykamaapehabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiYcacaWGWbGaaGik aiaadohacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqaaiaad6gaae qaaOGaaGikaiaadMhacaaIPaGaaGjcVlaadsgacaWG5bGaaGjcVlaa dsgacaWGZbGaaGyFaiaaiYcaaaaaaa@C102@                       (12)

где                    K n (t,s)= 1 G n (0) G n (s) e λ n 2 νt , t<sT, 1 G n (0) G n (s) e λ n 2 νt + e λ n 2 ν(ts) , 0s<t. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aWaaiqaaeaafaqa aeGaeaaaaeaaaeaacqGHsisldaWcaaqaaiaaigdaaeaacaWGhbWaaS baaSqaaiaad6gaaeqaaOGaaGikaiaaicdacaaIPaaaaiaayIW7caWG hbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadohacaaIPaGaaGjcVl aadwgadaahaaWcbeqaaiabgkHiTiabeU7aSnaaDaaabaGaamOBaaqa aiaaikdaaaGaeqyVd4MaaGjcVlaadshaaaGccaaISaaabaGaaGzbVd qaaiaadshacaaI8aGaam4CaiabgsMiJkaadsfacaaISaaabaaabaGa eyOeI0YaaSaaaeaacaaIXaaabaGaam4ramaaBaaaleaacaWGUbaabe aakiaaiIcacaaIWaGaaGykaaaacaaMi8Uaam4ramaaBaaaleaacaWG UbaabeaakiaaiIcacaWGZbGaaGykaiaayIW7caWGLbWaaWbaaSqabe aacqGHsislcqaH7oaBdaqhaaqaaiaad6gaaeaacaaIYaaaaiabe27a UjaayIW7caWG0baaaOGaey4kaSIaamyzamaaCaaaleqabaGaeyOeI0 Iaeq4UdW2aa0baaeaacaWGUbaabaGaaGOmaaaacqaH9oGBcaaMi8Ua aGikaiaadshacqGHsislcaWGZbGaaGykaaaakiaaiYcaaeaacaaMf8 oabaGaaGimaiabgsMiJkaadohacaaI8aGaamiDaiaai6caaaaacaGL 7baaaaa@8648@

Теорема 1  Пусть выполнены условия φ(x) L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabfM6axnaa BaaaleaacaWGSbaabeaakiaaiMcaaaa@3D41@  и f(x,p) L 2 ( Ω l ) < MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGMbGaaGikaiaadIhacaaISaGaamiCaiaaiMcacqWFLicudaWg aaWcbaGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiabfM6axnaaBa aabaGaamiBaaqabaGaaGykaaqabaGccaaI8aGaeyOhIukaaa@45AC@ . Тогда для функции (12) имеет место включение u(t,x) H ¯ (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacqGHiiIZceWGibGbaebacaaIOaGaeuyQdCLaaGykaaaa @3C28@ .

Proof. При фиксированных значениях функции переопределения и функции управления, подставляя формулу (12) в интеграл

                                                     = 0 T 0 l u 2 (t,y)dydt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8xeHKKaaGypamaapehabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaadYgaa0 Gaey4kIipakiaadwhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiD aiaaiYcacaWG5bGaaGykaiaayIW7caWGKbGaamyEaiaayIW7caWGKb GaamiDaiaaiYcaaaa@540E@

получим

             = 0 T 0 l n=1 b n (y) φ n G n (0) λ n 2 ν e λ n 2 νt + 0 T K n (t,s) 0 l f(z,p(s)) b n (z)dzds 2 dydt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8xeHKKaaGypamaapehabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaadYgaa0 Gaey4kIipakmaacmaabaWaaabCaeqaleaacaWGUbGaaGypaiaaigda aeaacqGHEisPa0GaeyyeIuoakiaadkgadaWgaaWcbaGaamOBaaqaba GccaaIOaGaamyEaiaaiMcadaWadaqaamaalaaabaGaeqOXdO2aaSba aSqaaiaad6gaaeqaaaGcbaGaam4ramaaBaaaleaacaWGUbaabeaaki aaiIcacaaIWaGaaGykaaaacaaMi8+aaSaaaeaacqaH7oaBdaqhaaWc baGaamOBaaqaaiaaikdaaaGccqaH9oGBaeaacaWGLbWaaWbaaSqabe aacqaH7oaBdaqhaaqaaiaad6gaaeaacaaIYaaaaiabe27aUjaayIW7 caWG0baaaaaakiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadsfaa0 Gaey4kIipakiaadUeadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiD aiaaiYcacaWGZbGaaGykamaapehabeWcbaGaaGimaaqaaiaadYgaa0 Gaey4kIipakiaadAgacaaIOaGaamOEaiaaiYcacaWGWbGaaGikaiaa dohacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadQhacaaIPaGaaGjcVlaadsgacaWG6bGaaGjcVlaadsga caWGZbaacaGLBbGaayzxaaaacaGL7bGaayzFaaWaaWbaaSqabeaaca aIYaaaaOGaamizaiaadMhacaaMi8UaamizaiaadshacaaI9aaaaa@9684@

                                         = 0 T 0 l n=1 φ n G n (0) λ n 2 ν e λ n 2 νt b n (y) 2 dydt+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqd cqGHRiI8aOWaaiWaaeaadaaeWbqabSqaaiaad6gacaaI9aGaaGymaa qaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacqaHgpGAdaWgaaWcbaGa amOBaaqabaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaaGikai aaicdacaaIPaaaaiaayIW7daWcaaqaaiabeU7aSnaaDaaaleaacaWG UbaabaGaaGOmaaaakiabe27aUbqaaiaadwgadaahaaWcbeqaaiabeU 7aSnaaDaaabaGaamOBaaqaaiaaikdaaaGaeqyVd4MaaGjcVlaadsha aaaaaOGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaam yEaiaaiMcaaiaawUhacaGL9baadaahaaWcbeqaaiaaikdaaaGccaWG KbGaamyEaiaayIW7caWGKbGaamiDaiabgUcaRaaa@672A@

         +2 0 T 0 l n=1 φ n G n (0) λ n 2 ν e λ n 2 νt b n (y) n=1 0 T K n (t,s) 0 l f(z,p(s)) b n (z)dzds b i (y)dydt+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaabaGa amiBaaqdcqGHRiI8aOWaaiWaaeaadaaeWbqabSqaaiaad6gacaaI9a GaaGymaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacqaHgpGAdaWg aaWcbaGaamOBaaqabaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaaicdacaaIPaaaaiaayIW7daWcaaqaaiabeU7aSnaaDaaa leaacaWGUbaabaGaaGOmaaaakiabe27aUbqaaiaadwgadaahaaWcbe qaaiabeU7aSnaaDaaabaGaamOBaaqaaiaaikdaaaGaeqyVd4MaaGjc VlaadshaaaaaaOGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGcca aIOaGaamyEaiaaiMcaaiaawUhacaGL9baadaGadaqaamaaqahabeWc baGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaWdXb qabSqaaiaaicdaaeaacaWGubaaniabgUIiYdGccaWGlbWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMcadaWdXb qabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaa dQhacaaISaGaamiCaiaaiIcacaWGZbGaaGykaiaaiMcacaaMi8Uaam OyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG6bGaaGykaiaayIW7 caWGKbGaamOEaiaayIW7caWGKbGaam4CaaGaay5Eaiaaw2haaiaadk gadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamyEaiaaiMcacaaMi8Ua amizaiaadMhacaaMi8UaamizaiaadshacqGHRaWkaaa@97E3@

                            + 0 T 0 l n=1 0 T K n (t,s) 0 l f(z,p(s)) b n (z)dzds b n (y) 2 dydt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGcdaGadaqaamaaqahabeWcbaGaamOBaiaai2dacaaIXa aabaGaeyOhIukaniabggHiLdGcdaWdXbqabSqaaiaaicdaaeaacaWG ubaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaad6gaaeqaaOGaaGikai aadshacaaISaGaam4CaiaaiMcadaWdXbqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaWGMbGaaGikaiaadQhacaaISaGaamiCaiaaiI cacaWGZbGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaacaWGUbaa beaakiaaiIcacaWG6bGaaGykaiaayIW7caWGKbGaamOEaiaayIW7ca WGKbGaam4CaiaayIW7caWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGik aiaadMhacaaIPaaacaGL7bGaayzFaaWaaWbaaSqabeaacaaIYaaaaO GaamizaiaadMhacaaMi8UaamizaiaadshacaaIUaaaaa@72A8@

Учитывая, что b n (x)= 2/l sinπn/l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaIPaGaaGypamaakaaabaGaaGOmaiaai+cacaWG SbaaleqaaOGaci4CaiaacMgacaGGUbGaeqiWdaNaaGjcVlaad6gaca aIVaGaamiBaaaa@4248@ , и применяя неравенства Коши MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Шварца и Бесселя, получаем следующую оценку:

             2 0 T n=1 φ n G n (0) λ n 2 ν e λ n 2 νt 2 dt+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8xeHKKaeyizImQaaGOmamaapehabeWcbaGa aGimaaqaaiaadsfaa0Gaey4kIipakmaadmaabaWaaabCaeqaleaaca WGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaaemaabaWa aSaaaeaacqaHgpGAdaWgaaWcbaGaamOBaaqabaaakeaacaWGhbWaaS baaSqaaiaad6gaaeqaaOGaaGikaiaaicdacaaIPaaaaiaayIW7daWc aaqaaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGOmaaaakiabe27aUb qaaiaadwgadaahaaWcbeqaaiabeU7aSnaaDaaabaGaamOBaaqaaiaa ikdaaaGaeqyVd4MaaGjcVlaadshaaaaaaaGccaGLhWUaayjcSdaaca GLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaOGaaGjcVlaadsgacaWG 0bGaey4kaScaaa@6B6D@

                      +4 0 T n=1 φ n G n (0) λ n 2 ν e λ n 2 νt 0 T n=1 K n (t,s) 0 l f(y,p(s)) b n (y)dy dsdt+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaI0aWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOWaaabCaeqaleaacaWGUbGaaGyp aiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaaemaabaWaaSaaaeaacq aHgpGAdaWgaaWcbaGaamOBaaqabaaakeaacaWGhbWaaSbaaSqaaiaa d6gaaeqaaOGaaGikaiaaicdacaaIPaaaaiaayIW7daWcaaqaaiabeU 7aSnaaDaaaleaacaWGUbaabaGaaGOmaaaakiabe27aUbqaaiaadwga daahaaWcbeqaaiabeU7aSnaaDaaabaGaamOBaaqaaiaaikdaaaGaeq yVd4MaaGjcVlaadshaaaaaaaGccaGLhWUaayjcSdWaa8qCaeqaleaa caaIWaaabaGaamivaaqdcqGHRiI8aOWaaabCaeqaleaacaWGUbGaaG ypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaaemaabaGaam4samaa BaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPa Waa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaa iIcacaWG5bGaaGilaiaadchacaaIOaGaam4CaiaaiMcacaaIPaGaaG jcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamyEaiaaiMca caaMi8UaamizaiaadMhacaaMi8oacaGLhWUaayjcSdGaamizaiaado hacaaMi8UaamizaiaadshacqGHRaWkaaa@87BB@

                               +2 0 T 0 T n=1 K n (t,s) 0 l f(y,p(s)) b n (y)dy ds 2 dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOWaaiWaaeaadaWdXbqabSqaaiaa icdaaeaacaWGubaaniabgUIiYdGcdaaeWbqabSqaaiaad6gacaaI9a GaaGymaaqaaiabg6HiLcqdcqGHris5aOWaaqWaaeaacaWGlbWaaSba aSqaaiaad6gaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMcada WdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGik aiaadMhacaaISaGaamiCaiaaiIcacaWGZbGaaGykaiaaiMcacaaMi8 UaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG5bGaaGykaiaa yIW7caWGKbGaamyEaaGaay5bSlaawIa7aiaadsgacaWGZbaacaGL7b GaayzFaaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadshacqGHKjYO aaa@6854@

                 2 0 T n=1 φ n G n (0) 2 n=1 λ n 2 ν e λ n 2 νt 2 dt+4 0 T n=1 φ n G n (0) 2 1/2 n=1 λ n 2 ν e λ n 2 νt 2 1/2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaIYaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOWaaabCaeqaleaacaWGUbGaaGyp aiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaaemaabaWaaSaaaeaacq aHgpGAdaWgaaWcbaGaamOBaaqabaaakeaacaWGhbWaaSbaaSqaaiaa d6gaaeqaaOGaaGikaiaaicdacaaIPaaaaaGaay5bSlaawIa7amaaCa aaleqabaGaaGOmaaaakmaaqahabeWcbaGaamOBaiaai2dacaaIXaaa baGaeyOhIukaniabggHiLdGcdaabdaqaamaalaaabaGaeq4UdW2aa0 baaSqaaiaad6gaaeaacaaIYaaaaOGaeqyVd4gabaGaamyzamaaCaaa leqabaGaeq4UdW2aa0baaeaacaWGUbaabaGaaGOmaaaacqaH9oGBca aMi8UaamiDaaaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaikda aaGccaWGKbGaamiDaiabgUcaRiaaisdadaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGcdaWadaqaamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaabdaqaamaalaaaba GaeqOXdO2aaSbaaSqaaiaad6gaaeqaaaGcbaGaam4ramaaBaaaleaa caWGUbaabeaakiaaiIcacaaIWaGaaGykaaaaaiaawEa7caGLiWoada ahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiaa igdacaaIVaGaaGOmaaaakmaadmaabaWaaabCaeqaleaacaWGUbGaaG ypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaaemaabaWaaSaaaeaa cqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqaH9oGBaeaaca WGLbWaaWbaaSqabeaacqaH7oaBdaqhaaqaaiaad6gaaeaacaaIYaaa aiabe27aUjaayIW7caWG0baaaaaaaOGaay5bSlaawIa7amaaCaaale qabaGaaGOmaaaaaOGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaa i+cacaaIYaaaaOGaey41aqlaaa@9E53@

                         × 0 T n=1 K n (t,s) 2 1/2 n=1 0 l f(y,p(s)) b n (y)dy 2 1 2 dsdt+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGcdaWadaqaamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaabdaqaaiaadUeada WgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGyk aaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2 faamaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaOWaamWaaeaadaae WbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aO WaaqWaaeaadaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caWGMbGaaGikaiaadMhacaaISaGaamiCaiaaiIcacaWGZbGaaGykai aaiMcacaaMi8UaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG 5bGaaGykaiaayIW7caWGKbGaamyEaaGaay5bSlaawIa7amaaCaaale qabaGaaGOmaaaaaOGaay5waiaaw2faamaaCaaaleqabaWaaSaaaeaa caaIXaaabaGaaGOmaaaaaaGccaaMi8UaamizaiaadohacaaMi8Uaam izaiaadshacqGHRaWkaaa@7735@

                    +2 0 T 0 T n=1 K n (t,s) 2 1 2 n=1 0 l f(y,p(s)) b n (y)dy 2 1 2 ds 2 dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOWaaiWaaeaadaWdXbqabSqaaiaa icdaaeaacaWGubaaniabgUIiYdGcdaWadaqaamaaqahabeWcbaGaam OBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaabdaqaaiaa dUeadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiYcacaWGZb GaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaOGaay5w aiaaw2faamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaa GcdaWadaqaamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOh IukaniabggHiLdGcdaabdaqaamaapehabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiYcacaWGWbGaaGik aiaadohacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqaaiaad6gaae qaaOGaaGikaiaadMhacaaIPaGaaGjcVlaadsgacaWG5baacaGLhWUa ayjcSdWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaWaaWbaaS qabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaakiaayIW7caWGKbGa am4CaaGaay5Eaiaaw2haamaaCaaaleqabaGaaGOmaaaakiaadsgaca WG0bGaeyizImkaaa@7C80@

                                  2 χ 0 2 χ 2 +4 χ 0 χ 1 χ 3 χ 4 +2[ χ 3 χ 4 ] 2 T<, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaIYaWaamWaaeaacqaHhp WydaWgaaWcbaGaaGimaaqabaaakiaawUfacaGLDbaadaahaaWcbeqa aiaaikdaaaGccqaHhpWydaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca aI0aGaeq4Xdm2aaSbaaSqaaiaaicdaaeqaaOGaaGjcVlabeE8aJnaa BaaaleaacaaIXaaabeaakiaayIW7cqaHhpWydaWgaaWcbaGaaG4maa qabaGccaaMi8Uaeq4Xdm2aaSbaaSqaaiaaisdaaeqaaOGaey4kaSIa aGOmaiaaiUfacqaHhpWydaWgaaWcbaGaaG4maaqabaGccqaHhpWyda WgaaWcbaGaaGinaaqabaGccaaIDbWaaWbaaSqabeaacaaIYaaaaOGa amivaiaaiYdacqGHEisPcaaISaaaaa@5AD6@

где

     χ 0 = φ G(0) l 2 , χ 1 = 0 T λ 2 ν e λ 2 νt l 2 dt, χ 2 = 0 T λ 2 ν e λ 2 νt l 2 2 dt, χ 3 = 0 T K(t,s)ds B 2 (T) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaWgaaWcbaGaaGimaaqaba GccaaI9aWaauWaaeaadaWcaaqaaiabeA8aQbqaaiaadEeacaaIOaGa aGimaiaaiMcaaaaacaGLjWUaayPcSdWaaSbaaSqaaiabloriSnaaBa aabaGaaGOmaaqabaaabeaakiaaiYcacaaMf8Uaeq4Xdm2aaSbaaSqa aiaaigdaaeqaaOGaaGypamaapehabeWcbaGaaGimaaqaaiaadsfaa0 Gaey4kIipakmaafmaabaWaaSaaaeaacqaH7oaBdaahaaWcbeqaaiaa ikdaaaGccqaH9oGBaeaacaWGLbWaaWbaaSqabeaacqaH7oaBdaahaa qabeaacaaIYaaaaiabe27aUjaadshaaaaaaaGccaGLjWUaayPcSdWa aSbaaSqaaiabloriSnaaBaaabaGaaGOmaaqabaaabeaakiaadsgaca WG0bGaaGilaiaaywW7cqaHhpWydaWgaaWcbaGaaGOmaaqabaGccaaI 9aWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOWaauWaae aadaWcaaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaakiabe27aUbqa aiaadwgadaahaaWcbeqaaiabeU7aSnaaCaaabeqaaiaaikdaaaGaeq yVd4MaamiDaaaaaaaakiaawMa7caGLkWoadaqhaaWcbaGaeS4eHW2a aSbaaeaacaaIYaaabeaaaeaacaaIYaaaaOGaamizaiaadshacaaISa GaaGzbVlabeE8aJnaaBaaaleaacaaIZaaabeaakiaai2dadaqbdaqa amaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiaadUeaca aIOaGaamiDaiaaiYcacaWGZbGaaGykaiaayIW7caWGKbGaam4Caiaa yIW7aiaawMa7caGLkWoadaWgaaWcbaGaamOqamaaBaaabaGaaGOmaa qabaGaaGikaiaadsfacaaIPaaabeaakiaaiYcaaaa@9354@

                                              χ 4 = max t[0,T] f(x,p(t)) L 2 ( Ω l ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaWgaaWcbaGaaGinaaqaba GccaaI9aWaaybuaeqaleaacaWG0bGaeyicI4SaaG4waiaaicdacaaI SaGaamivaiaai2faaeqakeaaciGGTbGaaiyyaiaacIhaaaqeeuuDJX wAKbsr4rNCHbaceaGae8xjIaLaamOzaiaaiIcacaWG4bGaaGilaiaa dchacaaIOaGaamiDaiaaiMcacaaIPaGae8xjIa1aaSbaaSqaaiaadY eadaWgaaqaaiaaikdaaeqaaiaaiIcacqqHPoWvdaWgaaqaaiaadYga aeqaaiaaiMcaaeqaaOGaaGilaaaa@53E5@

откуда следует утверждение теоремы.

Теперь рассмотрим функцию переопределения. По условию задачи предполагается, что

                                    ψ(x)= n=1 ψ n b n (x), ψ n = 0 l ψ(y) b n (y)dy. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaca aI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0Ga eyyeIuoakiabeI8a5naaBaaaleaacaWGUbaabeaakiaadkgadaWgaa WcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVlab eI8a5naaBaaaleaacaWGUbaabeaakiaai2dadaWdXbqabSqaaiaaic daaeaacaWGSbaaniabgUIiYdGccqaHipqEcaaIOaGaamyEaiaaiMca caaMi8UaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG5bGaaG ykaiaayIW7caWGKbGaamyEaiaai6caaaa@5CDA@

Применим промежуточное условие (4) к представлению (12):

n=1 ψ n b n (x)= n=1 u n ( t 1 ) b n (x)= n=1 λ n 2 ν G n (0) φ n e λ n 2 ν t 1 + 0 T K n ( t 1 ,s) 0 l f(y,p(s)) b n (y)dyds b n (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG ymaaqaaiabg6HiLcqdcqGHris5aOGaeqiYdK3aaSbaaSqaaiaad6ga aeqaaOGaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG4bGaaG ykaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6Hi LcqdcqGHris5aOGaamyDamaaBaaaleaacaWGUbaabeaakiaaiIcaca WG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaayIW7caWGIbWaaSba aSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGypamaaqahabe WcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaWa daqaamaalaaabaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIYaaaaO GaeqyVd4gabaGaam4ramaaBaaaleaacaWGUbaabeaakiaaiIcacaaI WaGaaGykaaaacaaMi8+aaSaaaeaacqaHgpGAdaWgaaWcbaGaamOBaa qabaaakeaacaWGLbWaaWbaaSqabeaacqaH7oaBdaqhaaqaaiaad6ga aeaacaaIYaaaaiabe27aUjaayIW7caWG0bWaaSbaaeaacaaIXaaabe aaaaaaaOGaey4kaSYaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGH RiI8aOGaam4samaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadohacaaIPaWaa8qCaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGjcVlaadAgacaaIOaGaam yEaiaaiYcacaWGWbGaaGikaiaadohacaaIPaGaaGykaiaayIW7caWG IbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadMhacaaIPaGaaGjcVl aadsgacaWG5bGaaGjcVlaadsgacaWGZbaacaGLBbGaayzxaaGaamOy amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGykaiaai6caaa a@9D76@      (13)

Умножая скалярно каждый член (13) на b m (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaad2gaaeqaaO GaaGikaiaadIhacaaIPaaaaa@3632@ , получим

             n=1 ψ n ( b n (x), b m (x))= n=1 λ n 2 ν G n (0) φ n e λ n 2 ν t 1 ( b n (x), b m (x))+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG ymaaqaaiabg6HiLcqdcqGHris5aOGaeqiYdK3aaSbaaSqaaiaad6ga aeqaaOGaaGikaiaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaam iEaiaaiMcacaaISaGaamOyamaaBaaaleaacaWGTbaabeaakiaaiIca caWG4bGaaGykaiaaiMcacaaI9aWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeq4UdW2aa0ba aSqaaiaad6gaaeaacaaIYaaaaOGaeqyVd4gabaGaam4ramaaBaaale aacaWGUbaabeaakiaaiIcacaaIWaGaaGykaaaacaaMi8+aaSaaaeaa cqaHgpGAdaWgaaWcbaGaamOBaaqabaaakeaacaWGLbWaaWbaaSqabe aacqaH7oaBdaqhaaqaaiaad6gaaeaacaaIYaaaaiabe27aUjaayIW7 caWG0bWaaSbaaeaacaaIXaaabeaaaaaaaOGaaGikaiaadkgadaWgaa WcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaISaGaamOyamaa BaaaleaacaWGTbaabeaakiaaiIcacaWG4bGaaGykaiaaiMcacqGHRa Wkaaa@7084@

                             + n=1 0 T K n ( t 1 ,s) 0 l f(y,p(s)) b n (y)dyds( b n (x), b m (x)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaad6gaca aI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOWaa8qCaeqaleaacaaI WaaabaGaamivaaqdcqGHRiI8aOGaam4samaaBaaaleaacaWGUbaabe aakiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadoha caaIPaWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam OzaiaaiIcacaWG5bGaaGilaiaadchacaaIOaGaam4CaiaaiMcacaaI PaGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamyEai aaiMcacaaMi8UaamizaiaadMhacaaMi8UaamizaiaadohacaaMi8Ua aGikaiaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiM cacaaISaGaamOyamaaBaaaleaacaWGTbaabeaakiaaiIcacaWG4bGa aGykaiaaiMcacaaIUaaaaa@697D@

Отсюда, учитывая, что функции b n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaIPaaaaa@3633@  образуют полную систему ортонормированных функций в L 2 Ω l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO WaaeWaaeaacqqHPoWvdaWgaaWcbaGaamiBaaqabaaakiaawIcacaGL Paaaaaa@37C2@ , имеем

            ψ n = φ n ω n + 0 T K n ( t 1 ,s) 0 l f y,p(s) b n (y)dyds,где ω n = λ n 2 ν G n (0) e λ n 2 ν t 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOBaaqaba GccaaI9aGaeqOXdO2aaSbaaSqaaiaad6gaaeqaaOGaeqyYdC3aaSba aSqaaiaad6gaaeqaaOGaey4kaSYaa8qCaeqaleaacaaIWaaabaGaam ivaaqdcqGHRiI8aOGaam4samaaBaaaleaacaWGUbaabeaakiaaiIca caWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohacaaIPaWaa8 qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGjcVlaadAga daqadaqaaiaadMhacaaISaGaamiCaiaaiIcacaWGZbGaaGykaaGaay jkaiaawMcaaiaayIW7caWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGik aiaadMhacaaIPaGaaGjcVlaadsgacaWG5bGaaGjcVlaadsgacaWGZb GaaGilaiaaywW7caqGZqGaaeineiaabwdbcaaMf8UaeqyYdC3aaSba aSqaaiaad6gaaeqaaOGaaGypamaalaaabaGaeq4UdW2aa0baaSqaai aad6gaaeaacaaIYaaaaOGaeqyVd4gabaGaam4ramaaBaaaleaacaWG UbaabeaakiaaiIcacaaIWaGaaGykaaaacaWGLbWaaWbaaSqabeaacq GHsislcqaH7oaBdaqhaaqaaiaad6gaaeaacaaIYaaaaiabe27aUjaa yIW7caWG0bWaaSbaaeaacaaIXaaabeaaaaGccaaIUaaaaa@7FF1@                (14)

Из (14) однозначно определяем коэффициенты Фурье φ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOBaaqaba aaaa@349D@  для функции переопределения φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@ :

                              φ n = ψ n ω n 1 ω n 1 0 T K n ( t 1 ,s) 0 l f(y,p(s)) b n (y)dyds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOBaaqaba GccaaI9aGaeqiYdK3aaSbaaSqaaiaad6gaaeqaaOGaeqyYdC3aa0ba aSqaaiaad6gaaeaacqGHsislcaaIXaaaaOGaeyOeI0IaeqyYdC3aa0 baaSqaaiaad6gaaeaacqGHsislcaaIXaaaaOWaa8qCaeqaleaacaaI WaaabaGaamivaaqdcqGHRiI8aOGaam4samaaBaaaleaacaWGUbaabe aakiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadoha caaIPaWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam OzaiaaiIcacaWG5bGaaGilaiaadchacaaIOaGaam4CaiaaiMcacaaI PaGaaGjcVlaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamyEai aaiMcacaaMi8UaamizaiaadMhacaaMi8UaamizaiaadohacaaISaaa aa@66A6@                                   (15)

если функция управления p(s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadohacaaIPaaaaa@3513@  существует и единственна. Подставляя (15) в представление (12), получаем

             u(t,x)= n=1 b n (x){ ψ n γ n (t) γ n (t) 0 T K n ( t 1 ,s) 0 l f(y,p(s)) b n (y)dyds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaa cqGHEisPa0GaeyyeIuoakiaadkgadaWgaaWcbaGaamOBaaqabaGcca aIOaGaamiEaiaaiMcacaaI7bGaeqiYdK3aaSbaaSqaaiaad6gaaeqa aOGaaGjcVlabeo7aNnaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0b GaaGykaiabgkHiTiabeo7aNnaaBaaaleaacaWGUbaabeaakiaaiIca caWG0bGaaGykamaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIi pakiaadUeadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDamaaBaaa leaacaaIXaaabeaakiaaiYcacaWGZbGaaGykamaapehabeWcbaGaaG imaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiYca caWGWbGaaGikaiaadohacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaS qaaiaad6gaaeqaaOGaaGikaiaadMhacaaIPaGaaGjcVlaadsgacaWG 5bGaaGjcVlaadsgacaWGZbGaey4kaScaaa@7750@

                                          + 0 T K n (t,s) 0 l f(y,p(s)) b n (y)dyds}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaad6gaaeqaaOGa aGikaiaadshacaaISaGaam4CaiaaiMcadaWdXbqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadMhacaaISaGaamiC aiaaiIcacaWGZbGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaaca WGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyEaiaa yIW7caWGKbGaam4Caiaai2hacaaISaaaaa@56CF@                                              (16)

где γ n (t)= e λ n 2 ν( t 1 t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamOBaaqaba GccaaIOaGaamiDaiaaiMcacaaI9aGaamyzamaaCaaaleqabaGaeq4U dW2aa0baaeaacaWGUbaabaGaaGOmaaaacqaH9oGBcaaMi8UaaGikai aadshadaWgaaqaaiaaigdaaeqaaiabgkHiTiaadshacaaIPaaaaaaa @44BB@ . Аналогично, подставляя (15) в ряды Фурье (6), имеем

                            φ(x)= n=1 b n (x) ψ n ω n 1 ω n 1 0 T K n ( t 1 ,s) f n (p(s))ds . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaca aI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0Ga eyyeIuoakiaadkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEai aaiMcadaGadaqaaiabeI8a5naaBaaaleaacaWGUbaabeaakiabeM8a 3naaDaaaleaacaWGUbaabaGaeyOeI0IaaGymaaaakiabgkHiTiabeM 8a3naaDaaaleaacaWGUbaabaGaeyOeI0IaaGymaaaakmaapehabeWc baGaaGimaaqaaiaadsfaa0Gaey4kIipakiaadUeadaWgaaWcbaGaam OBaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYca caWGZbGaaGykaiaadAgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaam iCaiaaiIcacaWGZbGaaGykaiaaiMcacaaMi8Uaamizaiaadohaaiaa wUhacaGL9baacaaIUaaaaa@6691@                                 (17)

3 Функция управления

Пусть p(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaaaaa@3514@  - функция оптимального управления:

                                    ΔJ[p(t)]=J[p(t)+Δp(t)]J[p(t)]0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGkbGaaG4waiaadchaca aIOaGaamiDaiaaiMcacaaIDbGaaGypaiaadQeacaaIBbGaamiCaiaa iIcacaWG0bGaaGykaiabgUcaRiabfs5aejaadchacaaIOaGaamiDai aaiMcacaaIDbGaeyOeI0IaamOsaiaaiUfacaWGWbGaaGikaiaadsha caaIPaGaaGyxaiabgwMiZkaaicdacaaISaaaaa@4F76@

где p(t)+Δp(t)C( Ω T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaGaey 4kaSIaeuiLdqKaamiCaiaaiIcacaWG0bGaaGykaiabgIGiolaadoea caaMi8UaaGikaiabfM6axnaaBaaaleaacaWGubaabeaakiaaiMcaaa a@428E@ . Применение принципа максимума приводит нашу задачу к следующим необходимым условиям оптимальности (см., например, [3, 17]):

             q(t,x) f p (x,p(t))2αp(t)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaMi8UaamOzamaaBaaaleaacaWGWbaabeaakiaaiIca caWG4bGaaGilaiaadchacaaIOaGaamiDaiaaiMcacaaIPaGaeyOeI0 IaaGOmaiabeg7aHjaayIW7caWGWbGaaGikaiaadshacaaIPaGaaGyp aiaaicdacaaISaaaaa@4B3D@                                                                               (18)

             q(t,x) f pp (x,p(t))2α<0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaMi8UaamOzamaaBaaaleaacaWGWbGaaGjcVlaadcha aeqaaOGaaGikaiaadIhacaaISaGaamiCaiaaiIcacaWG0bGaaGykai aaiMcacqGHsislcaaIYaGaeqySdeMaaGipaiaaicdacaaISaaaaa@48DE@                                                                                    (19)

в котором q(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaISaGaam iEaiaaiMcaaaa@36C8@  является обобщенным решением следующей задачи:

                                         q t (t,x)+ν q xx (t,x)=0,(t,x)Ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadshaaeqaaO GaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHRaWkcqaH9oGBcaaM i8UaamyCamaaBaaaleaacaWG4bGaaGjcVlaadIhaaeqaaOGaaGikai aadshacaaISaGaamiEaiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8Ua aGikaiaadshacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvcaaISa aaaa@5088@

                             q(T,x)=2[u(T,x)ξ(x)],q(t,0)=q(t,l)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadsfacaaISaGaam iEaiaaiMcacaaI9aGaeyOeI0IaaGOmaiaaiUfacaWG1bGaaGikaiaa dsfacaaISaGaamiEaiaaiMcacqGHsislcqaH+oaEcaaIOaGaamiEai aaiMcacaaIDbGaaGilaiaaywW7caWGXbGaaGikaiaadshacaaISaGa aGimaiaaiMcacaaI9aGaamyCaiaaiIcacaWG0bGaaGilaiaadYgaca aIPaGaaGypaiaaicdacaaISaaaaa@53E2@

и определяется формулой

             q(t,x)=2 n=1 { ψ n γ n (T) γ n (T) 0 T K n ( t 1 ,s) 0 l f(y,p(s)) b n (y)dyds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaI9aGaeyOeI0IaaGOmamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaeyOhIukaniabggHiLdGccaaI7bGaeqiYdK3aaS baaSqaaiaad6gaaeqaaOGaaGjcVlabeo7aNnaaBaaaleaacaWGUbaa beaakiaaiIcacaWGubGaaGykaiabgkHiTiabeo7aNnaaBaaaleaaca WGUbaabeaakiaaiIcacaWGubGaaGykamaapehabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakiaadUeadaWgaaWcbaGaamOBaaqabaGcca aIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbGaaGyk amaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAgaca aIOaGaamyEaiaaiYcacaWGWbGaaGikaiaadohacaaIPaGaaGykaiaa dkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamyEaiaaiMcacaaMi8 UaamizaiaadMhacaaMi8UaamizaiaadohacqGHRaWkaaa@72B2@

                           + 0 T K n (T,s) 0 l f(y,p(s)) b n (y)dyds ξ n } e λ n 2 ν(Tt) b n (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaad6gaaeqaaOGa aGikaiaadsfacaaISaGaam4CaiaaiMcadaWdXbqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadMhacaaISaGaamiC aiaaiIcacaWGZbGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaaca WGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyEaiaa yIW7caWGKbGaam4CaiabgkHiTiabe67a4naaBaaaleaacaWGUbaabe aakiaai2hacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBdaqhaaqa aiaad6gaaeaacaaIYaaaaiabe27aUjaayIW7caaIOaGaamivaiabgk HiTiaadshacaaIPaaaaOGaamOyamaaBaaaleaacaWGUbaabeaakiaa iIcacaWG4bGaaGykaiaai6caaaa@6BFC@                                (20)

С учетом условия f p (x,p(t))0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadIhacaaISaGaamiCaiaaiIcacaWG0bGaaGykaiaaiMca cqGHGjsUcaaIWaaaaa@3CC3@  условия оптимальности (18) можно переписать следующим образом:

                                              2αp(t) f p 1 (x,p(t))=q(t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaeqySdeMaamiCaiaaiIcaca WG0bGaaGykaiaadAgadaqhaaWcbaGaamiCaaqaaiabgkHiTiaaigda aaGccaaIOaGaamiEaiaaiYcacaWGWbGaaGikaiaadshacaaIPaGaaG ykaiaai2dacaWGXbGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaI Uaaaaa@481F@                                                   (21)

Подставляя (21) в условие (19), получаем

                                            f p (x,p(t)) p(t) f p (x,p(t)) p >0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadIhacaaISaGaamiCaiaaiIcacaWG0bGaaGykaiaaiMca daqadaqaamaalaaabaGaamiCaiaaiIcacaWG0bGaaGykaaqaaiaadA gadaWgaaWcbaGaamiCaaqabaGccaaIOaGaamiEaiaaiYcacaWGWbGa aGikaiaadshacaaIPaGaaGykaaaaaiaawIcacaGLPaaadaWgaaWcba GaamiCaaqabaGccaaI+aGaaGimaiaai6caaaa@4B14@                                                 (22)

В силу (22), подставляя (20) в (21), получаем

             αp(t) f np (p(t)) γ n (T) 0 T K n ( t 1 ,s) 0 l f(y,p(s)) b n (y)dyds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabeg7aHjaayIW7caWGWb GaaGikaiaadshacaaIPaaabaGaamOzamaaBaaaleaacaWGUbGaamiC aaqabaGccaaIOaGaamiCaiaaiIcacaWG0bGaaGykaiaaiMcaaaGaey OeI0Iaeq4SdC2aaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadsfacaaI PaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam4sam aaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaigda aeqaaOGaaGilaiaadohacaaIPaWaa8qCaeqaleaacaaIWaaabaGaam iBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG5bGaaGilaiaadchacaaI OaGaam4CaiaaiMcacaaIPaGaamOyamaaBaaaleaacaWGUbaabeaaki aaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyEaiaayIW7caWGKbGa am4CaiabgUcaRaaa@68C1@

                       + 0 T K n (T,s) 0 l f(y,p(s)) b n (y)dyds= ψ n γ n (T) + ξ n e λ n 2 ν(Tt) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaad6gaaeqaaOGa aGikaiaadsfacaaISaGaam4CaiaaiMcadaWdXbqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadMhacaaISaGaamiC aiaaiIcacaWGZbGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaaca WGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyEaiaa yIW7caWGKbGaam4Caiaai2dadaqadaqaamaalaaabaGaeqiYdK3aaS baaSqaaiaad6gaaeqaaaGcbaGaeq4SdC2aaSbaaSqaaiaad6gaaeqa aOGaaGikaiaadsfacaaIPaaaaiabgUcaRiabe67a4naaBaaaleaaca WGUbaabeaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHi TiabeU7aSnaaDaaabaGaamOBaaqaaiaaikdaaaGaeqyVd4MaaGjcVl aaiIcacaWGubGaeyOeI0IaamiDaiaaiMcaaaGccaaIUaaaaa@70DD@                           (23)

Перепишем (23) как следующее сложное интегральное уравнение относительно управляющей функции p(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaaaaa@3514@ :

                αp(t)/ 0 l f p (y,p(t)) b n (y)dy+ 0 T R n (s) 0 l f(y,p(s)) b n (y)dyds= F n (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaWGWbGaaGikaiaadshaca aIPaGaaG4lamaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadAgadaWgaaWcbaGaamiCaaqabaGccaaIOaGaamyEaiaaiYcaca WGWbGaaGikaiaadshacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadMhacaaIPaGaaGjcVlaadsgacaWG5b Gaey4kaSYaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGa amOuamaaBaaaleaacaWGUbaabeaakiaaiIcacaWGZbGaaGykamaape habeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGa amyEaiaaiYcacaWGWbGaaGikaiaadohacaaIPaGaaGykaiaayIW7ca WGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadMhacaaIPaGaaGjc VlaadsgacaWG5bGaaGjcVlaadsgacaWGZbGaaGypaiaadAeadaWgaa WcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaaISaaaaa@7501@                     (24)

где

                 R n (s)= K n (T,s) γ n (T) K n ( t 1 ,s), F n (t)= ψ n γ n (T) + ξ n e λ n 2 ν(Tt) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadohacaaIPaGaaGypaiaadUeadaWgaaWcbaGaamOBaaqa baGccaaIOaGaamivaiaaiYcacaWGZbGaaGykaiabgkHiTiabeo7aNn aaBaaaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaiaayIW7caWG lbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaG ymaaqabaGccaaISaGaam4CaiaaiMcacaaISaGaaGzbVlaadAeadaWg aaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aWaaeWaae aadaWcaaqaaiabeI8a5naaBaaaleaacaWGUbaabeaaaOqaaiabeo7a NnaaBaaaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaaaacqGHRa WkcqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacaaM i8UaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdW2aa0baaeaacaWGUb aabaGaaGOmaaaacqaH9oGBcaaMi8UaaGikaiaadsfacqGHsislcaWG 0bGaaGykaaaakiaai6caaaa@6F5E@

Для того чтобы решить уравнение (24), мы используем следующие методы (см. [18]). В уравнении (24) положим

                                         αp(t)/ 0 l f p (y,p(t)) b n (y)dy=g(t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaWGWbGaaGikaiaadshaca aIPaGaaG4lamaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadAgadaWgaaWcbaGaamiCaaqabaGccaaIOaGaamyEaiaaiYcaca WGWbGaaGikaiaadshacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadMhacaaIPaGaaGjcVlaadsgacaWG5b GaaGypaiaadEgacaaIOaGaamiDaiaaiMcacaaISaaaaa@5250@                                             (25)

где g(t)C( Ω T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadshacaaIPaGaey icI4Saam4qaiaaiIcacqqHPoWvdaWgaaWcbaGaamivaaqabaGccaaI Paaaaa@3B59@  - пока неизвестная функция. Однако мы предполагаем, что она задана, т.е. функция g(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadshacaaIPaaaaa@350B@  известна. Поэтому из уравнения (25) относительно функции управления p(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaaaaa@3514@  получаем следующее нелинейное функциональное уравнение:

                                           p(t)= g(t) α 0 l f p (y,p(t)) b n (y)dy. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaGaaG ypamaalaaabaGaam4zaiaaiIcacaWG0bGaaGykaaqaaiabeg7aHbaa daWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbWaaS baaSqaaiaadchaaeqaaOGaaGikaiaadMhacaaISaGaamiCaiaaiIca caWG0bGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaacaWGUbaabe aakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyEaiaai6caaaa@51A9@                                                (26)

В действительности функция p(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaaaaa@3514@  зависит от n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@ , так как функция

                                                    0 l f p (y,p(t)) b n (y)dy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGccaWGMbWaaSbaaSqaaiaadchaaeqaaOGaaGikaiaa dMhacaaISaGaamiCaiaaiIcacaWG0bGaaGykaiaaiMcacaaMi8Uaam OyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7 caWGKbGaamyEaaaa@47DE@

- коэффициент Фурье на [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGSbGaaG yxaaaa@35EE@ . Для произвольной функции p(t)C( Ω T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadshacaaIPaGaey icI4Saam4qaiaaiIcacqqHPoWvdaWgaaWcbaGaamivaaqabaGccaaI Paaaaa@3B62@  рассмотрим следующую непрерывную норму:

                                                   p(t) C = max t Ω T |p(t)|. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGWbGaaGikaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoea aeqaaOGaaGypamaawafabeWcbaGaamiDaiabgIGiolabfM6axnaaBa aabaGaamivaaqabaaabeGcbaGaciyBaiaacggacaGG4baaaiaaiYha caWGWbGaaGikaiaadshacaaIPaGaaGiFaiaai6caaaa@4C20@

 

Теорема 2 Пусть выполнены следующие условия:

    (i).  0< f p (x,p(t)) L 2 ( Ω l ) M 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadAgadaWgaaWcbaGaamiCaaqabaGccaaIOaGa amiEaiaaiYcacaWGWbGaaGikaiaadshacaaIPaGaaGykaiab=vIiqn aaBaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaeuyQdC1a aSbaaeaacaWGSbaabeaacaaIPaaabeaakiabgsMiJkaad2eadaWgaa WcbaGaaGymaaqabaaaaa@4BEC@ , 0< M 1 =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaad2eadaWgaaWcba GaaGymaaqabaGccaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadsha aaa@3A8B@ ;

    (ii).  | f p (x, p 1 (t)) f p (x, p 2 (t))| M 2 (x)| p 1 (t) p 2 (t)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzamaaBaaaleaacaWGWb aabeaakiaaiIcacaWG4bGaaGilaiaadchadaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiDaiaaiMcacaaIPaGaeyOeI0IaamOzamaaBaaale aacaWGWbaabeaakiaaiIcacaWG4bGaaGilaiaadchadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaIPaGaaGiFaiabgsMiJk aad2eadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiMcacaaM i8UaaGiFaiaadchadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDai aaiMcacqGHsislcaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dshacaaIPaGaaGiFaaaa@5A8D@ , 0< M 2 (x) L 2 ( Ω l ) < MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaad2eadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa amiEaiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGOmaa qabaGaaGikaiabfM6axnaaBaaabaGaamiBaaqabaGaaGykaaqabaGc caaI8aGaeyOhIukaaa@465A@ ;

    (iii).  ρ= l/2 α 1 max t Ω T |g(t)| M 2 (x) L 2 ( Ω l ) <1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaI9aWaaOaaaeaacaWGSb GaaG4laiaaikdaaSqabaGccaaMi8UaeqySde2aaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGjcVpaawafabeWcbaGaamiDaiabgIGiolabfM 6axnaaBaaabaGaamivaaqabaaabeGcbaGaciyBaiaacggacaGG4baa aiaaiYhacaWGNbGaaGikaiaadshacaaIPaGaaGiFaiabgwSixhbbfv 3ySLgzGueE0jxyaGabaiab=vIiqjaad2eadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBa aabaGaaGOmaaqabaGaaGikaiabfM6axnaaBaaabaGaamiBaaqabaGa aGykaaqabaGccaaI8aGaaGymaaaa@5FD3@ .

Тогда нелинейное функциональное уравнение (26) имеет единственное решение в пространстве непрерывных функций C( Ω T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaBaaale aacaWGubaabeaakiaaiMcaaaa@368B@ . Это решение может быть найдено из следующего итерационного процесса:

               p 0,n (t)=0, p k+1,n (t)= g(t) α 0 l f p (y, p k,n (t)) b n (y)dy,k=0,1,2,. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaicdacaaISa GaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aGaaGimaiaaiYca caaMf8UaamiCamaaBaaaleaacaWGRbGaey4kaSIaaGymaiaaiYcaca WGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaWcaaqaaiaadEga caaIOaGaamiDaiaaiMcaaeaacqaHXoqyaaWaa8qCaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaamOzamaaBaaaleaacaWGWbaabeaa kiaaiIcacaWG5bGaaGilaiaadchadaWgaaWcbaGaam4AaiaaiYcaca WGUbaabeaakiaaiIcacaWG0bGaaGykaiaaiMcacaaMi8UaamOyamaa BaaaleaacaWGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKb GaamyEaiaaiYcacaaMf8Uaam4Aaiaai2dacaaIWaGaaGilaiaaigda caaISaGaaGOmaiaaiYcacqWIMaYscaaIUaaaaa@6C05@                    (27)

Proof. Из (27) получаем, что справедливы следующие оценки:

             | p k+1,n (t) p 0,n (t)| g(t) α 0 l | f p (y, p k,n (t)) b n (y)|dy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaiYhacaWGWbWaaS baaSqaaiaadUgacqGHRaWkcaaIXaGaaGilaiaad6gaaeqaaOGaaGik aiaadshacaaIPaGaeyOeI0IaamiCamaaBaaaleaacaaIWaGaaGilai aad6gaaeqaaOGaaGikaiaadshacaaIPaGaaGiFaiabgsMiJoaaemaa baWaaSaaaeaacaWGNbGaaGikaiaadshacaaIPaaabaGaeqySdegaaa Gaay5bSlaawIa7amaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4k IipakiaaiYhacaWGMbWaaSbaaSqaaiaadchaaeqaaOGaaGikaiaadM hacaaISaGaamiCamaaBaaaleaacaWGRbGaaGilaiaad6gaaeqaaOGa aGikaiaadshacaaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqaaiaad6 gaaeqaaOGaaGikaiaadMhacaaIPaGaaGiFaiaadsgacaWG5bGaeyiz Imkaaa@6A6D@

                      l 2 |g(t)| α f p (y, p k,n (t)) L 2 ( Ω l ) l 2 |g(t)| α M 1 <; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaGcaaqaamaalaaabaGaam iBaaqaaiaaikdaaaaaleqaaOGaaGjcVpaalaaabaGaaGiFaiaadEga caaIOaGaamiDaiaaiMcacaaI8baabaGaeqySdegaaebbfv3ySLgzGu eE0jxyaGabaiab=vIiqjaadAgadaWgaaWcbaGaamiCaaqabaGccaaI OaGaamyEaiaaiYcacaWGWbWaaSbaaSqaaiaadUgacaaISaGaamOBaa qabaGccaaIOaGaamiDaiaaiMcacaaIPaGae8xjIa1aaSbaaSqaaiaa dYeadaWgaaqaaiaaikdaaeqaaiaaiIcacqqHPoWvdaWgaaqaaiaadY gaaeqaaiaaiMcaaeqaaOGaeyizIm6aaOaaaeaadaWcaaqaaiaadYga aeaacaaIYaaaaaWcbeaakiaayIW7daWcaaqaaiaaiYhacaWGNbGaaG ikaiaadshacaaIPaGaaGiFaaqaaiabeg7aHbaacaaMi8Uaamytamaa BaaaleaacaaIXaaabeaakiaaiYdacqGHEisPcaaI7aGaaGzbVlaayw W7aaa@6B94@  

            | p k+1,n (t) p k,n (t)| g(t) α 0 l | f p (y, p k,n (t)) f p (y, p k1,n (t))| b n (y)dy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiCamaaBaaaleaacaWGRb Gaey4kaSIaaGymaiaaiYcacaWGUbaabeaakiaaiIcacaWG0bGaaGyk aiabgkHiTiaadchadaWgaaWcbaGaam4AaiaaiYcacaWGUbaabeaaki aaiIcacaWG0bGaaGykaiaaiYhacqGHKjYOdaabdaqaamaalaaabaGa am4zaiaaiIcacaWG0bGaaGykaaqaaiabeg7aHbaaaiaawEa7caGLiW oacaaMi8+aaqWaaeaacaaMi8+aa8qCaeqaleaacaaIWaaabaGaamiB aaqdcqGHRiI8aOGaaGiFaiaadAgadaWgaaWcbaGaamiCaaqabaGcca aIOaGaamyEaiaaiYcacaWGWbWaaSbaaSqaaiaadUgacaaISaGaamOB aaqabaGccaaIOaGaamiDaiaaiMcacaaIPaGaeyOeI0IaamOzamaaBa aaleaacaWGWbaabeaakiaaiIcacaWG5bGaaGilaiaadchadaWgaaWc baGaam4AaiabgkHiTiaaigdacaaISaGaamOBaaqabaGccaaIOaGaam iDaiaaiMcacaaIPaGaaGiFaiabgwSixlaadkgadaWgaaWcbaGaamOB aaqabaGccaaIOaGaamyEaiaaiMcacaaMi8UaamizaiaadMhacaaMi8 oacaGLhWUaayjcSdGaeyizImkaaa@7F8C@

g(t) α 0 l M 2 (y)| p k,n (t) p k1,n (t)| b n (y)dy l 2 |g(t)| α | p k,n (t) p k1,n (t)| M 2 (x) L 2 ( Ω l ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaabdaqaamaalaaabaGaam 4zaiaaiIcacaWG0bGaaGykaaqaaiabeg7aHbaaaiaawEa7caGLiWoa caaMi8+aaqWaaeaacaaMi8+aa8qCaeqaleaacaaIWaaabaGaamiBaa qdcqGHRiI8aOGaamytamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG 5bGaaGykaiaaiYhacaWGWbWaaSbaaSqaaiaadUgacaaISaGaamOBaa qabaGccaaIOaGaamiDaiaaiMcacqGHsislcaWGWbWaaSbaaSqaaiaa dUgacqGHsislcaaIXaGaaGilaiaad6gaaeqaaOGaaGikaiaadshaca aIPaGaaGiFaiabgwSixlaadkgadaWgaaWcbaGaamOBaaqabaGccaaI OaGaamyEaiaaiMcacaaMi8UaamizaiaadMhacaaMi8oacaGLhWUaay jcSdGaeyizIm6aaOaaaeaadaWcaaqaaiaadYgaaeaacaaIYaaaaaWc beaakiaayIW7daWcaaqaaiaaiYhacaWGNbGaaGikaiaadshacaaIPa GaaGiFaaqaaiabeg7aHbaacaaI8bGaamiCamaaBaaaleaacaWGRbGa aGilaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0IaamiCam aaBaaaleaacaWGRbGaeyOeI0IaaGymaiaaiYcacaWGUbaabeaakiaa iIcacaWG0bGaaGykaiaaiYhacqGHflY1daqbdaqaaiaad2eadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiMcaaiaawMa7caGLkWoa daWgaaWcbaGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiabfM6axn aaBaaabaGaamiBaaqabaGaaGykaaqabaGccaaIUaaaaa@9410@

Тогда нетрудно проверить, что

                               p k+1,n (t) p k,n (t) C ρ p k,n (t) p k1,n (t) C . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGWbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaGaaGilaiaad6ga aeqaaOGaaGikaiaadshacaaIPaGaeyOeI0IaamiCamaaBaaaleaaca WGRbGaaGilaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGae8xjIa1a aSbaaSqaaiaadoeaaeqaaOGaeyizImQaeqyWdiNaeyyXICTae8xjIa LaamiCamaaBaaaleaacaWGRbGaaGilaiaad6gaaeqaaOGaaGikaiaa dshacaaIPaGaeyOeI0IaamiCamaaBaaaleaacaWGRbGaeyOeI0IaaG ymaiaaiYcacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiab=vIiqnaa BaaaleaacaWGdbaabeaakiaai6caaaa@60E6@

Из справедливости этих оценок следует, что оператор в правой части (26) является сжимающим, так что он имеет единственную неподвижную точку в пространстве непрерывных функций C( Ω Т ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaBaaale aacaWGIqaabeaakiaaiMcaaaa@365D@ . Поскольку C( Ω Т ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaBaaale aacaWGIqaabeaakiaaiMcaaaa@365D@  - банахово пространство, функциональное уравнение (26) имеет единственное решение в данном пространстве. Теорема 2 доказана.

Обозначим указанное это решение функционального уравнения (26) через p n (t)=h(t, g n (t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadIgacaaIOaGaamiDaiaaiYca caWGNbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGaaG ykaaaa@3F78@ . Подставляя его в (24) и учитывая (25), получаем следующее нелинейное интегральное уравнение Фредгольма второго рода:

                     g n (t)=(t; g n ) F n (t) 0 T R n (s) 0 l f(y,h(s, g n (s))) b n (y)dyds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaaGypamrr1ngBPrMrYf2A0vNCaeHbfv3y SLgzGyKCHTgD1jhaiqaacqWFresscaaIOaGaamiDaiaaiUdacaWGNb WaaSbaaSqaaiaad6gaaeqaaOGaaGykaiabggMi6kaadAeadaWgaaWc baGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacqGHsisldaWdXbqabS qaaiaaicdaaeaacaWGubaaniabgUIiYdGccaWGsbWaaSbaaSqaaiaa d6gaaeqaaOGaaGikaiaadohacaaIPaWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG5bGaaGilaiaadIga caaIOaGaam4CaiaaiYcacaWGNbWaaSbaaSqaaiaad6gaaeqaaOGaaG ikaiaadohacaaIPaGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaa caWGUbaabeaakiaaiIcacaWG5bGaaGykaiaayIW7caWGKbGaamyEai aayIW7caWGKbGaam4Caiaai6caaaa@759A@                          (28)

Теорема 3  Пусть выполняются следующие условия:

    (i).  ξ(x) L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabfM6axnaa BaaaleaacaWGSbaabeaakiaaiMcaaaa@3D47@ ;

    (ii).  |h(t, g 1,n (t))h(t, g 2,n (t))| M 3 | g 1,n (t) g 2,n (t)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiAaiaaiIcacaWG0bGaaG ilaiaadEgadaWgaaWcbaGaaGymaiaaiYcacaWGUbaabeaakiaaiIca caWG0bGaaGykaiaaiMcacqGHsislcaWGObGaaGikaiaadshacaaISa Gaam4zamaaBaaaleaacaaIYaGaaGilaiaad6gaaeqaaOGaaGikaiaa dshacaaIPaGaaGykaiaaiYhacqGHKjYOcaWGnbWaaSbaaSqaaiaaio daaeqaaOGaaGiFaiaadEgadaWgaaWcbaGaaGymaiaaiYcacaWGUbaa beaakiaaiIcacaWG0bGaaGykaiabgkHiTiaadEgadaWgaaWcbaGaaG OmaiaaiYcacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaaiYhaaaa@5AC1@ , 0< M 3 =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaad2eadaWgaaWcba GaaG4maaqabaGccaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadsha aaa@3A8D@ ;

    (iii).  τ= l/2 M 3 M 2 (x) L 2 ( Ω l ) 0 T | R n (s)|ds<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aWaaOaaaeaacaWGSb GaaG4laiaaikdaaSqabaGccaaMi8UaamytamaaBaaaleaacaaIZaaa beaarqqr1ngBPrgifHhDYfgaiqaakiab=vIiqjaad2eadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGa amitamaaBaaabaGaaGOmaaqabaGaaGikaiabfM6axnaaBaaabaGaam iBaaqabaGaaGykaaqabaGcdaWdXaqabSqaaiaaicdaaeaacaWGubaa niabgUIiYdGccaaI8bGaamOuamaaBaaaleaacaWGUbaabeaakiaaiI cacaWGZbGaaGykaiaaiYhacaaMi8UaamizaiaadohacaaI8aGaaGym aaaa@5A33@ .

Тогда нелинейное интегральное уравнение Фредгольма (28) имеет единственное решение в классе непрерывных функций g n (t)C( Ω T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaeyicI4Saam4qaiaaiIcacqqHPoWvdaWg aaWcbaGaamivaaqabaGccaaIPaaaaa@3C82@ , которое можно найти из следующего итерационного процесса:

                           g 0,n (t)= F n (t), g k+1,n (t)=(t; g k,n ),k=0,1,2,. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaicdacaaISa GaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aGaamOramaaBaaa leaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8Uaam 4zamaaBaaaleaacaWGRbGaey4kaSIaaGymaiaaiYcacaWGUbaabeaa kiaaiIcacaWG0bGaaGykaiaai2datuuDJXwAKzKCHTgD1jharyqr1n gBPrgigjxyRrxDYbaceaGae8xeHKKaaGikaiaadshacaaI7aGaam4z amaaBaaaleaacaWGRbGaaGilaiaad6gaaeqaaOGaaGykaiaaiYcaca aMf8Uaam4Aaiaai2dacaaIWaGaaGilaiaaigdacaaISaGaaGOmaiaa iYcacqWIMaYscaaIUaaaaa@6444@                                (29)

Proof. Из последовательных приближений (29) получаем следующие оценки:

             g k+1,n (t) g 0,n (t) C 0 T | R n (s)| 0 l | f p (y,h(s, g k,n (s))) b n (y)|dyds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGNbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaGaaGilaiaad6ga aeqaaOGaaGikaiaadshacaaIPaGaeyOeI0Iaam4zamaaBaaaleaaca aIWaGaaGilaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGae8xjIa1a aSbaaSqaaiaadoeaaeqaaOGaeyizIm6aa8qCaeqaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOGaaGiFaiaadkfadaWgaaWcbaGaamOBaaqa baGccaaIOaGaam4CaiaaiMcacaaI8bWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaaGiFaiaadAgadaWgaaWcbaGaamiCaaqa baGccaaIOaGaamyEaiaaiYcacaWGObGaaGikaiaadohacaaISaGaam 4zamaaBaaaleaacaWGRbGaaGilaiaad6gaaeqaaOGaaGikaiaadoha caaIPaGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaacaWGUbaabe aakiaaiIcacaWG5bGaaGykaiaaiYhacaaMi8UaamizaiaadMhacaaM i8UaamizaiaadohacqGHKjYOaaa@7852@

              l 2 0 T | R n (s)| f p (x,h(s, g k,n (s))) L 2 ( Ω l ) ds l 2 M 1 0 T | R n (s)|ds<; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaGcaaqaamaalaaabaGaam iBaaqaaiaaikdaaaaaleqaaOWaa8qCaeqaleaacaaIWaaabaGaamiv aaqdcqGHRiI8aOGaaGiFaiaadkfadaWgaaWcbaGaamOBaaqabaGcca aIOaGaam4CaiaaiMcacaaI8bGaaGjcVhbbfv3ySLgzGueE0jxyaGab aiab=vIiqjaadAgadaWgaaWcbaGaamiCaaqabaGccaaIOaGaamiEai aaiYcacaWGObGaaGikaiaadohacaaISaGaam4zamaaBaaaleaacaWG RbGaaGilaiaad6gaaeqaaOGaaGikaiaadohacaaIPaGaaGykaiaaiM cacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGOmaaqabaGaaGik aiabfM6axnaaBaaabaGaamiBaaqabaGaaGykaaqabaGccaaMi8Uaam izaiaadohacqGHKjYOdaGcaaqaamaalaaabaGaamiBaaqaaiaaikda aaaaleqaaOGaaGjcVlaad2eadaWgaaWcbaGaaGymaaqabaGcdaWdXb qabSqaaiaaicdaaeaacaWGubaaniabgUIiYdGccaaI8bGaamOuamaa BaaaleaacaWGUbaabeaakiaaiIcacaWGZbGaaGykaiaaiYhacaaMi8 UaamizaiaadohacaaI8aGaeyOhIuQaaG4oaaaa@7896@

              g k+1,n (t) g k,n (t) C 0 T | R n (s)| f p (x,h(s, g k,n (s))) f p (x,h(s, g k1,n (s))) L 2 ( Ω l ) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGNbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaGaaGilaiaad6ga aeqaaOGaaGikaiaadshacaaIPaGaeyOeI0Iaam4zamaaBaaaleaaca WGRbGaaGilaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGae8xjIa1a aSbaaSqaaiaadoeaaeqaaOGaeyizIm6aa8qCaeqaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOGaaGiFaiaadkfadaWgaaWcbaGaamOBaaqa baGccaaIOaGaam4CaiaaiMcacaaI8bGaaGjcVlab=vIiqjaadAgada WgaaWcbaGaamiCaaqabaGccaaIOaGaamiEaiaaiYcacaWGObGaaGik aiaadohacaaISaGaam4zamaaBaaaleaacaWGRbGaaGilaiaad6gaae qaaOGaaGikaiaadohacaaIPaGaaGykaiaaiMcacqGHsislcaWGMbWa aSbaaSqaaiaadchaaeqaaOGaaGikaiaadIhacaaISaGaamiAaiaaiI cacaWGZbGaaGilaiaadEgadaWgaaWcbaGaam4AaiabgkHiTiaaigda caaISaGaamOBaaqabaGccaaIOaGaam4CaiaaiMcacaaIPaGaaGykai ab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaacaaMi8UaaGOmaaqabaGa aGikaiabfM6axnaaBaaabaGaamiBaaqabaGaaGykaaqabaGccaWGKb Gaam4CaiabgsMiJcaa@846D@

                     l 2 M 3 M 2 (x) L 2 ( Ω l ) 0 T | R n (s)| g k,n (s) g k1,n (s) C ds= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaGcaaqaamaalaaabaGaam iBaaqaaiaaikdaaaaaleqaaOGaaGjcVlaad2eadaWgaaWcbaGaaG4m aaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLicucaWGnbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqa aiaadYeadaWgaaqaaiaaikdaaeqaaiaaiIcacqqHPoWvdaWgaaqaai aadYgaaeqaaiaaiMcaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiv aaqdcqGHRiI8aOGaaGiFaiaadkfadaWgaaWcbaGaamOBaaqabaGcca aIOaGaam4CaiaaiMcacaaI8bGaaGjcVlab=vIiqjaadEgadaWgaaWc baGaam4AaiaaiYcacaWGUbaabeaakiaaiIcacaWGZbGaaGykaiabgk HiTiaadEgadaWgaaWcbaGaam4AaiabgkHiTiaaigdacaaISaGaamOB aaqabaGccaaIOaGaam4CaiaaiMcacqWFLicudaWgaaWcbaGaam4qaa qabaGccaWGKbGaam4Caiaai2daaaa@6A34@

                               =τ g k,n (t) g k1,n (t) C < g k,n (t) g k1,n (t) C . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiXdqNaeyyXICDeeuuDJX wAKbsr4rNCHbaceaGae8xjIaLaam4zamaaBaaaleaacaWGRbGaaGil aiaad6gaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0Iaam4zamaaBa aaleaacaWGRbGaeyOeI0IaaGymaiaaiYcacaWGUbaabeaakiaaiIca caWG0bGaaGykaiab=vIiqnaaBaaaleaacaWGdbaabeaakiaaiYdacq WFLicucaWGNbWaaSbaaSqaaiaadUgacaaISaGaamOBaaqabaGccaaI OaGaamiDaiaaiMcacqGHsislcaWGNbWaaSbaaSqaaiaadUgacqGHsi slcaaIXaGaaGilaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGae8xj Ia1aaSbaaSqaaiaadoeaaeqaaOGaaGOlaaaa@60AA@

Из этих оценок следует, что оператор в правой части (24) является сжимающим, так что он имеет единственную неподвижную точку в пространстве непрерывных функций C( Ω Т ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaBaaale aacaWGIqaabeaakiaaiMcaaaa@365D@ . Следовательно, нелинейное интегральное уравнение (28) имеет единственное решение в пространстве непрерывных функций g n (t)C( Ω T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaeyicI4Saam4qaiaaiIcacqqHPoWvdaWg aaWcbaGaamivaaqabaGccaaIPaaaaa@3C82@ . Теорема 3 доказана.

Подставляя решение уравнения (28) в (24), определим управляющую функцию p n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaaaaa@363D@ .

Согласно (16), оптимальный процесс находится по формуле

                               u ¯ (t,x)= n=1 b n (x) 0 T R n (t,s) 0 l f(y, p ¯ (s)) b n (y)dyds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaebacaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGym aaqaaiabg6HiLcqdcqGHris5aOGaamOyamaaBaaaleaacaWGUbaabe aakiaaiIcacaWG4bGaaGykamaapehabeWcbaGaaGimaaqaaiaadsfa a0Gaey4kIipakiaadkfadaWgaaWcbaGaamOBaaqabaGccaaIOaGaam iDaiaaiYcacaWGZbGaaGykamaapehabeWcbaGaaGimaaqaaiaadYga a0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiYcaceWGWbGbaebaca aIOaGaam4CaiaaiMcacaaIPaGaaGjcVlaadkgadaWgaaWcbaGaamOB aaqabaGccaaIOaGaamyEaiaaiMcacaaMi8UaamizaiaadMhacaaMi8 UaamizaiaadohacaaISaaaaa@6594@                                   (30)

где R n (t,s)= K n (t,s) γ n (t) K n ( t 1 ,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aGaam4samaaBaaa leaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaey OeI0Iaeq4SdC2aaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadshacaaI PaGaaGjcVlaadUeadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDam aaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbGaaGykaaaa@4D3B@ . Согласно (17), функция переопределения имеет вид

                    φ ¯ (x)= n=1 b n (x) ψ n ω n 1 ω n 1 0 T K n (t,s) 0 l f y, p ¯ (s) b n (y)dyds . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaqeaiaaiIcacaWG4bGaaG ykaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6Hi LcqdcqGHris5aOGaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcaca WG4bGaaGykamaacmaabaGaeqiYdK3aaSbaaSqaaiaad6gaaeqaaOGa eqyYdC3aa0baaSqaaiaad6gaaeaacqGHsislcaaIXaaaaOGaeyOeI0 IaeqyYdC3aa0baaSqaaiaad6gaaeaacqGHsislcaaIXaaaaOWaa8qC aeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam4samaaBaaale aacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaWaa8qC aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzamaabmaaba GaamyEaiaaiYcaceWGWbGbaebacaaIOaGaam4CaiaaiMcaaiaawIca caGLPaaacaaMi8UaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcaca WG5bGaaGykaiaayIW7caWGKbGaamyEaiaayIW7caWGKbGaam4CaaGa ay5Eaiaaw2haaiaai6caaaa@741A@                        (31)

Согласно формулам (7) и (24), минимальное значение функционала вычисляется по следующей формуле:

   J[ p ¯ ]= 0 l n=1 b n (y) ψ n γ n (T)+ 0 T R n (s) 0 l f(z, p ¯ (s)) b n (z)dzds ξ n dy+α 0 T [ p ¯ (t)] 2 dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaG4waiqadchagaqeaiaai2 facaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOWa aiWaaeaadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLc qdcqGHris5aOGaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG 5bGaaGykamaadmaabaGaeqiYdK3aaSbaaSqaaiaad6gaaeqaaOGaaG jcVlabeo7aNnaaBaaaleaacaWGUbaabeaakiaaiIcacaWGubGaaGyk aiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipaki aadkfadaWgaaWcbaGaamOBaaqabaGccaaIOaGaam4CaiaaiMcadaWd XbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikai aadQhacaaISaGabmiCayaaraGaaGikaiaadohacaaIPaGaaGykaiaa yIW7caWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadQhacaaIPa GaaGjcVlaadsgacaWG6bGaaGjcVlaadsgacaWGZbGaeyOeI0IaeqOV dG3aaSbaaSqaaiaad6gaaeqaaaGccaGLBbGaayzxaaaacaGL7bGaay zFaaGaamizaiaadMhacqGHRaWkcqaHXoqydaWdXbqabSqaaiaaicda aeaacaWGubaaniabgUIiYdGccaaIBbGabmiCayaaraGaaGikaiaads hacaaIPaGaaGyxamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGa aGOlaaaa@897E@        (32)

Теорема 4  Пусть выполнены условия теоремы 3. Если функция ψ(x) L 2 ( Ω l ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabfM6axnaa BaaaleaacaWGSbaabeaakiaaiMcaaaa@3D52@  удовлетворяет условию

                                                      n=1 | ψ n γ n (T)|<, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG ymaaqaaiabg6HiLcqdcqGHris5aOGaaGiFaiabeI8a5naaBaaaleaa caWGUbaabeaakiaayIW7cqaHZoWzdaWgaaWcbaGaamOBaaqabaGcca aIOaGaamivaiaaiMcacaaI8bGaaGipaiabg6HiLkaaiYcaaaa@4683@

то функционал (32) принимает конечное значение.

Proof. Достаточно показать абсолютную и равномерную сходимость ряда

                                        B= n=1 0 T R n (s) 0 l f(z, p ¯ (s)) b n (z)dzds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaaGypamaaqahabeWcbaGaam OBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaWdXbqabSqa aiaaicdaaeaacaWGubaaniabgUIiYdGccaWGsbWaaSbaaSqaaiaad6 gaaeqaaOGaaGikaiaadohacaaIPaWaa8qCaeqaleaacaaIWaaabaGa amiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG6bGaaGilaiqadchaga qeaiaaiIcacaWGZbGaaGykaiaaiMcacaaMi8UaamOyamaaBaaaleaa caWGUbaabeaakiaaiIcacaWG6bGaaGykaiaayIW7caWGKbGaamOEai aayIW7caWGKbGaam4Caiaai6caaaa@5B1C@                                             (33)

Применим к (33) неравенство Коши MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Шварца и неравенство Бесселя:

             B n=1 0 T | R n (s)| 0 l f(z, p ¯ (s)) b n (z)dz ds= 0 T n=1 | R n (s)| 0 l f(z, p ¯ (s)) b n (z)dz ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaeyizIm6aaabCaeqaleaaca WGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaapehabeWc baGaaGimaaqaaiaadsfaa0Gaey4kIipakiaaiYhacaWGsbWaaSbaaS qaaiaad6gaaeqaaOGaaGikaiaadohacaaIPaGaaGiFaiaayIW7daab daqaaiaayIW7daWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYd GccaWGMbGaaGikaiaadQhacaaISaGabmiCayaaraGaaGikaiaadoha caaIPaGaaGykaiaayIW7caWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaG ikaiaadQhacaaIPaGaaGjcVlaadsgacaWG6bGaaGjcVdGaay5bSlaa wIa7aiaadsgacaWGZbGaaGypamaapehabeWcbaGaaGimaaqaaiaads faa0Gaey4kIipakmaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGccaaI8bGaamOuamaaBaaaleaacaWGUbaabe aakiaaiIcacaWGZbGaaGykaiaaiYhacaaMi8+aaqWaaeaacaaMi8+a a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiI cacaWG6bGaaGilaiqadchagaqeaiaaiIcacaWGZbGaaGykaiaaiMca caaMi8UaamOyamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG6bGaaG ykaiaayIW7caWGKbGaamOEaiaayIW7aiaawEa7caGLiWoacaWGKbGa am4CaiabgsMiJcaa@9583@

                   0 T n=1 max 0tT | R n (t )| 2 1/2 n=1 max 0tT 0 l f(z, p ¯ (t)) b n (z)dz 2 1/2 ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGcdaGadaqaamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaGfqbqabSqaaiaaic dacqGHKjYOcaWG0bGaeyizImQaamivaaqabOqaaiGac2gacaGGHbGa aiiEaaaacaaI8bGaamOuamaaBaaaleaacaWGUbaabeaakiaaiIcaca WG0bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL 9baadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakmaacmaabaWaaa bCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoa kmaawafabeWcbaGaaGimaiabgsMiJkaadshacqGHKjYOcaWGubaabe GcbaGaciyBaiaacggacaGG4baaamaaemaabaGaaGjcVpaapehabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGaamOEai aaiYcaceWGWbGbaebacaaIOaGaamiDaiaaiMcacaaIPaGaaGjcVlaa dkgadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamOEaiaaiMcacaaMi8 UaamizaiaadQhacaaMi8oacaGLhWUaayjcSdWaaWbaaSqabeaacaaI YaaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacaaIXaGaaG4laiaaik daaaGccaWGKbGaam4CaiabgsMiJcaa@86E6@

                                  TR(t) B 2 (T) max 0tT f(x, p ¯ (t)) L 2 ( Ω l ) <. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaWGubqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamOuaiaaiIcacaWG0bGaaGykaiab=vIiqnaa BaaaleaacaWGcbWaaSbaaeaacaaIYaaabeaacaaIOaGaamivaiaaiM caaeqaaOWaaybuaeqaleaacaaIWaGaeyizImQaamiDaiabgsMiJkaa dsfaaeqakeaaciGGTbGaaiyyaiaacIhaaaGae8xjIaLaamOzaiaaiI cacaWG4bGaaGilaiqadchagaqeaiaaiIcacaWG0bGaaGykaiaaiMca cqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGOmaaqabaGaaGikai abfM6axnaaBaaabaGaamiBaaqabaGaaGykaaqabaGccaaI8aGaeyOh IuQaaGOlaaaa@5E3B@

Приближенное значение функционала вычисляется из следующего итерационного процесса:

J[ p ¯ k ]= 0 l n=1 b n (y) ψ n γ n (T)+ 0 T R n (s) 0 l f(z, p ¯ k (s)) b n (z)dzds ξ n dy+α 0 T [ p ¯ k (t)] 2 dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaG4waiqadchagaqeamaaCa aaleqabaGaam4Aaaaakiaai2facaaI9aWaa8qCaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOWaaiWaaeaadaaeWbqabSqaaiaad6gaca aI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOGaamOyamaaBaaaleaa caWGUbaabeaakiaaiIcacaWG5bGaaGykamaadmaabaGaeqiYdK3aaS baaSqaaiaad6gaaeqaaOGaaGjcVlabeo7aNnaaBaaaleaacaWGUbaa beaakiaaiIcacaWGubGaaGykaiabgUcaRmaapehabeWcbaGaaGimaa qaaiaadsfaa0Gaey4kIipakiaadkfadaWgaaWcbaGaamOBaaqabaGc caaIOaGaam4CaiaaiMcadaWdXbqabSqaaiaaicdaaeaacaWGSbaani abgUIiYdGccaWGMbGaaGikaiaadQhacaaISaGabmiCayaaraWaaWba aSqabeaacaWGRbaaaOGaaGikaiaadohacaaIPaGaaGykaiaayIW7ca WGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadQhacaaIPaGaaGjc VlaadsgacaWG6bGaaGjcVlaadsgacaWGZbGaeyOeI0IaeqOVdG3aaS baaSqaaiaad6gaaeqaaaGccaGLBbGaayzxaaaacaGL7bGaayzFaaGa amizaiaadMhacqGHRaWkcqaHXoqydaWdXbqabSqaaiaaicdaaeaaca WGubaaniabgUIiYdGccaaIBbGabmiCayaaraWaaWbaaSqabeaacaWG RbaaaOGaaGikaiaadshacaaIPaGaaGyxamaaCaaaleqabaGaaGOmaa aakiaadsgacaWG0bGaaGOlaaaa@8CF3@     (34)

4 Заключение

При помощи метода разделения переменных Фурье исследована нелокальная задача для уравнения теплопроводности с интегральным условием, условиями Дирихле и условием с промежуточным значением. На основе принципа максимума сформулированы необходимые условия оптимальности функции управления по квадратичным критериям. Функция оптимального управления однозначно определяется из интегрального уравнения (24) методом последовательных приближений. Получены уравнения для определения функции переопределения, функции оптимального управления и функции состояния. Приведены представления для расчета оптимального процесса, функции переопределения и минимального значения функционала - формулы (27), (29), (30), (31) и (34). Полученные результаты могут найти дальнейшее применение при развитии математической и прикладной теории нелинейного оптимального управления в обратных задачах для некоторых систем с распределенными параметрами.

×

About the authors

T. K. Yuldashev

Tashkent State University of Economics

Author for correspondence.
Email: tursun.k.yuldashev@gmail.com
Uzbekistan, Tashkent

G. К. Abdurakhmanova

Tashkent State University of Economics

Email: g.abdurakhmanova@tsue.uz
Uzbekistan, Tashkent

References

  1. Искендеров А. Д., Гамидов Р. А. Задачи оптимизации с градиентом управления в коэффициентах эллиптических уравнений Автомат. телемех. 2020 81 9 1627–1636
  2. Евтушенко Ю. Г. Методы решения экстремальных задач и их применение в системах оптимизации М. Наука 1982
  3. Егоров А. И. Оптимальное управление термическими и диффузионными процессами М. Наука 1978
  4. Лурье К. А. Оптимальное управление в задачах математической физики М. Наука 1975
  5. Кротов В. Ф., Гурман В. И. Методы и задачи оптимального управления М. Наука 1973
  6. Квитко А. Н. Об одном методе решения локальной краевой задачи для нелинейной управляемой системы Автомат. телемех. 2020 81 2 236–246
  7. Миллер Б. М., Рубинович Е. Я. Разрывные решения в задачах оптимального управления и их представление с помощью сингулярных пространственно-временных преобразований Автомат. телемех. 2013 74 12 56–103
  8. Пулькина Л. С. Смешанная задача с интегральным условием для гиперболического уравнения Мат. заметки. 2003 74 3 435–445
  9. Рапопорт Е. Я. Оптимальное управление системами с распределенным параметром М. Высшая школа 2009
  10. Срочко В. А. Итерационные методы решения задач оптимального управления М. Физматлит 2000
  11. Юлдашев T. K. Оптимальное управление обратными тепловыми процессами в параболическом уравнении с нелинейными отклонениями по времени Итоги науки техн. Совр. мат. прилож. Темат. обз. 2022 210 117–135
  12. Юлдашев Т. К. Определение коэффициента и классическая разрешимость нелокальной краевой задачи для интегро-дифференциального уравнения Бенни—Люка с вырожденным ядром Итоги науки техн. Совр. мат. прилож. Темат. обз. 2018 156 89–102
  13. Юлдашев Т. К. Обратная смешанная задача для интегро-дифференциального уравнения с многомерным оператором Бенни—Люка и нелинейными максимумами Итоги науки техн. Совр. мат. прилож. Темат. обз. 2021 201 3–15
  14. Юлдашев Т. К., Рахмонов Ф. Д., Исмоилов А. С. Интегро-дифференциальное уравнение Буссинеска с интегральными условиями и c малым параметром при смешанных производных Итоги науки техн. Совр. мат. прилож. Темат. обз. 2022 211 114–130
  15. Girsanov I. V. Lectures on the Mathematical Theory of Extremum Problems New York Springer-Verlag 1972
  16. Lions J. L. Optimal Control of Systems Governed by Partial Differential Equations New York Springer-Verlag 1971
  17. Kerimbekov A. K. On solvability of the nonlinear optimal control problem for processes described by the semilinear parabolic equations Proc. World Congress Engineering, Vol. I London, July 6-8, 2011 2011 270–275
  18. Yuldashev T. K. Nonlinear optimal control of thermal processes in a nonlinear inverse problem Lobachevskii J. Math. 2020 41 1 124–136

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Юлдашев Т.K., Абдурахманова Г.К.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».