Converting a Continuous Fuzzy Signal by a Linear Dynamic System
- Authors: Khatskevich V.L.1
-
Affiliations:
- Air Force Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin
- Issue: Vol 237 (2024)
- Pages: 34-48
- Section: Статьи
- URL: https://journal-vniispk.ru/2782-4438/article/view/274737
- DOI: https://doi.org/10.36535/2782-4438-2024-237-34-48
- ID: 274737
Cite item
Full Text
Abstract
In this paper, we apply the method of Green’s function to the search for bounded solutions of a high-order linear differential equation with constant coefficients and a fuzzy right-hand side. A class of equations with positive coefficients and a nonnegative Green’s function is distinguished, for which the results on the existence and smoothness of a fuzzy solution bounded on the whole axis are established. We prove that in the case where the right-hand side has a triangular form, the solution has the same form. Examples of radio engineering circuits with fuzzy input signals are considered.
About the authors
Vladimir L. Khatskevich
Air Force Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin
Author for correspondence.
Email: vlkhats@mail.ru
Russian Federation, Voronezh
References
- Аверкин А. Н. Нечеткие множества в моделях управления и искусственного интеллекта. — М.: Наука, 1986.
- Баскаков С. И. Радиотехнические цепи и сигналы. — М.: Высшая школа, 1988.
- Далецкий Ю. Л., Крейн М. Г. Устойчивостьрешений дифференциальных уравнений в банаховом пространстве. — М.: Наука, 1970.
- Деменков Н. П., Микрин Е. А., Мочалов И. А. Нечеткое оптимальное управление линейными системами. Ч. 1. Позиционное управление // Информ. технол. — 2019. — 25, № 5. — С. 259–270.
- Красносельский М. А., Бурд В. Ш., Колесов Ю. С. Нелинейные почти периодические колебания. — М.: Наука, 1970.
- Мочалов И. А., ХрисатМ. С., Шихаб Еддин М. Я. Нечеткие дифференциальные уравнения в задачах управления. Ч. II // Информ. технол. — 2015. — 21, № 4. — С. 243–250.
- Пегат А. Нечеткое моделирование и управление. — М.: БИНОМ. Лаборатория знаний, 2015.
- Хацкевич В. Л. Непрерывные процессы с нечеткими состояниями и их приложения // Автомат. телемех. — 2023. — 8. — С. 43–60.
- Ahmad L., Farooq M., Abdullah S. Solving nth order fuzzy differential equation by fuzzy Laplace transform / arXiv: arXiv:1403.0242 [math.GM].
- Allahviranloo T., Abbasbandy S., Salahshour S., Hakimzadeh A. A new method for solving fuzzy linear differential equations // Soft Comput. — 2011. — 92. — P. 181–197.
- Aumann R. J. Integrals of set-valued functions // J. Math. Anal. Appl. — 1965. — 12. — P. 1–12.
- Bede B., Gal S. G. Almost periodic fuzzy-number-valued functions // Fuzzy Sets Syst. — 2004. — 147, № 3. — P. 385–403.
- Bede B., Gal S. G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations // Fuzzy Sets Syst. — 2005. — 151, № 3. — P. 581–599.
- Cao L., Yao D., Li H., Meng W., Lu R. Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs // Fuzzy Sets Syst. — 2023. — 452. — P. 1–22.
- Dai R., Chen M. On the structural stability for two-point boundary value problems of undamped fuzzy differential equations // Fuzzy Sets Syst. — 2023. — 453, № 95–114.
- ElJaoui E., Melliani S., Chadli L. S. Solving second-order fuzzy differential equations by the fuzzy Laplace transform method // Adv. Differ. Equations. — 2015. — 66.
- Esmi E., Sanchez D. E., Wasques V. F., de Barros L. C. Solutions of higher order linear fuzzy differential equations with interactive fuzzy values // Fuzzy Sets Syst. — 2021. — 419. — P. 122–140.
- Hukuhara M. Intґegration des applications mesurables dont la valeur est un compact convexe // Func. Ekvacioj. — 1967. — 11. — P. 205–223.
- Kaleva O. Fuzzy differential equations // Fuzzy Sets Syst. — 1987. — 24, № 3. — P. 301–317.
- Kaleva O., Seikkala S. On fuzzy metric spaces // Fuzzy Sets Syst. — 1984. — 12. — P. 215–229.
- Khastan A., Bahrami F., Ivaz K. New results on multiple solutions for Nth order fuzzy differential equations under generalized differentiability // Boundary Value Probl. — 2009. — 7. — P. 1–13.
- Liu H. K. Comparison result of two-point fuzzy boundary value problems // Int. J. Comput. Math. Sci. — 5, № 1. — P. 463–469.
- Park J. Y., Han H. K. Existence and uniqueness theorem for a solution of fuzzy differential equations // Int. J. Math. Math. Sci. — 1996. — 22, № 2. — P. 271–279.
- Puri M. L., Ralescu D. A. Differential of fuzzy functions // J. Math. Anal. Appl. — 1983. — 91. — P. 552–558.
- Salahshour S., Allahviranloo T. Applications of fuzzy Laplace transforms // Soft Comput. — 2013. — 17. — P. 145–158.
- Seikkala S. On the fuzzy initial value problem // Fuzzy Sets Syst. — 1987. — 24, № 3. — P. 319–330.
- Wu H. C. The fuzzy Riemann integral and its numerical integration // Fuzzy Sets Syst. — 2000. — 110, № 1. — P. 1–25.
- Zhao R., Lu L., Feng G. Asynchronous fault detection filtering design for continuous-time T-S fuzzy affine dynamic systems in finite-frequency domain // Fuzzy Sets Syst. — 2023. — 452. — P. 168–190.
Supplementary files
