On problems of boundary control and optimal control of a distributed inhomogeneous oscillatory system with given intermediate conditions on the state functions

Cover Page

Cite item

Full Text

Abstract

In this work, we examine a distributed inhomogeneous oscillatory system, in which various states are specified at intermediate times. Problems of boundary control and optimal boundary control of this system are considered. The dynamics of this object is modeled by a one-dimensional wave equation with piecewise constant characteristics; the oscillations propagate in homogeneous domains areas in the same time. The quality criterion for optimal boundary control problems is specified over the entire time interval. A constructive approach to constructing a boundary control function and optimal control of one-dimensional oscillatory inhomogeneous processes is proposed. The research approach is based on methods of separation of variables, control theory, and optimal control of finite-dimensional systems with multipoint intermediate conditions. Under the influence of the constructed control law, wave oscillations from a given initial state pass into a given terminal state through multipoint intermediate states.

Full Text

1. Введение. Волновые уравнения, возникающие в задачах управления распределенными колебательными процессами, имеют неизменный теоретический интерес и существенное практическое значение (см. [1–5, 7–9, 11–18, 21, 22]). В задачах математического моделирования часто возникает необходимость генерации желаемой формы колебания или стабилизации колебания. Решение данной проблемы реализуется исследователями, как правило, с помощью задач граничного управления (см. [2, 4, 5, 7–9, 11–18, 21, 22]). Благодаря многочисленным приложениям многоточечные краевые задачи управления и оптимального управления динамикой являются активно развиваемым направлением в современной теории управления. В этих задачах, наряду с классическими краевыми условиями (начальными и конечными), дополнительно заданы многоточечные условия в промежуточные фиксированные моменты времени.

Задачам управления (в том числе и оптимального) динамикой разнородных составных систем посвящены, в частности, работы [1, 2, 4, 5, 7, 8, 11–18, 26]. Применительно к распределенной колебательной системе, включающей два кусочно однородных участка, эта задача была впервые сформулирована А. Г. Бутковским и исследована в [12]. Серия работ академика В. А. Ильина (см., например, [7, 8]) и работы [4, 5, 11, 13–16, 26] посвящены проблемам граничного управления (оптимального управления) процессами, которые моделируются одномерным волновым уравнением, состоящим из двух участков с разными физическими свойствами. Длины таких участков выбирались исходя из предположения, что время прохождения колебаний по каждому из них является одинаковым. Авторами указанных работ были изучены и выведены формулы типа Даламбера, при этом задачи исследовались методом бегущих волн.

В данной статье рассматривается серия задач граничного управления и оптимального граничного управления динамикой распределенной неоднородной колебательной системы, причем в промежуточные моменты времени известны различные состояния колебательного процесса, который состоит из двух кусочно однородных участков. Считаем, что физические характеристики этих участков удовлетворяют сделанным выше предположениям. Будем осуществлять управление и оптимальное управление за счет смещения одного конца (при закрепленном противоположном конце), а также за счет одновременного смещения обоих концов с заданными условиями: в начальный и конечный моменты времени, а также в разные определенные промежуточные моменты времени. Критерий качества в задачах оптимального граничного управления задан на всем интервале времени.

Сформулированные в данной работе задачи отличаются от существующих постановок тем, что помимо стандартных краевых условий заданы дополнительно многоточечные условия в промежуточные моменты времени, а именно: на функции колебания (прогиба), на их производную (функции скоростей точек), а также одновременно на функции колебания и производную функции колебания. При исследовании этих задач используется метод разделения переменных (метод Фурье).

Цель данной работы состоит в создании аналитического подхода и разработке алгоритма построения функции граничного управления и оптимального управления одномерными колебательными системами, обладающими неоднородными свойствами, динамика которых (под действием сформированного закона управления) за конечный отрезок времени переходит из определенного начального состояния через многоточечные промежуточные состояния в известное (желаемое) конечное состояние.

2. Постановка задачи. Пусть кусочно однородная среда состоит из двух участков с соответствующими длинами l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaa aa@3395@  и l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32AE@  (т.е. l 1 x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdaaaa@39AD@ , 0xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiEaiabgsMiJk aadYgaaaa@37CF@  ), a i = k i / ρ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaakaaabaGaam4AamaaBaaaleaacaWGPbaabeaakiaai+ca cqaHbpGCdaWgaaWcbaGaamyAaaqabaaabeaaaaa@3A45@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скорость прохождения волны по i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  -му участку, где ρ i =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCdaWgaaWcbaGaamyAaaqaba GccaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3A28@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  линейная плотность, k i =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0baaaa@3958@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  модуль Юнга, i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ . При этом имеет место равенство

l 1 a 1 = l a 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadYgadaWgaaWcbaGaaG ymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaaakiaai2da daWcaaqaaiaadYgaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaki aaiYcaaaa@39DC@  (2.1)

так что время прохождения волны по участкам разной длины совпадает. Пусть состояние неоднородной распределенной системы описывается функцией Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A4@ , l 1 xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaadYgaaaa@39E4@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , а отклонения от состояния равновесия можно представить в виде волнового уравнения следующего вида:

2 Q(x,t) t 2 = a 1 2 2 Q(x,t) x 2 , l 1 x0, 0 tT, a 2 2 2 Q(x,t) x 2 , 0 xl, 0 tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadgfacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGypamaace aabaqbaeaabiGbaaaabaaabaGaamyyamaaDaaaleaacaaIXaaabaGa aGOmaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam yuaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiE amaaCaaaleqabaGaaGOmaaaaaaGccaaISaaabaGaaGzbVlabgkHiTi aadYgadaWgaaWcbaGaaGymaaqabaaakeaacqGHKjYOcaWG4bGaeyiz ImQaaGimaiaaiYcaaeaacaaMf8UaaGimaaqaaiabgsMiJkaadshacq GHKjYOcaWGubGaaGilaaqaaaqaaiaadggadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki aadgfacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaa dIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaqaaiaaywW7caaIWa aabaGaeyizImQaamiEaiabgsMiJkaadYgacaaISaaabaGaaGzbVlaa icdaaeaacqGHKjYOcaWG0bGaeyizImQaamivaiaaiYcaaaaacaGL7b aaaaa@7D3A@  (2.2)

с граничными условиями двух видов:

1.  Q( l 1 ,t)=μ(t),Q(l,t)=0,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabgkHiTiaadYgada WgaaWcbaGaaGymaaqabaGccaaISaGaamiDaiaaiMcacaaI9aGaeqiV d0MaaGikaiaadshacaaIPaGaaGilaiaaywW7caWGrbGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaaGim aiabgsMiJkaadshacqGHKjYOcaWGubGaaGilaaaa@4EE1@  (2.3)

<p >2.  Q( l 1 ,t)=μ(t),Q(l,t)=ν(t),0tT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabgkHiTiaadYgada WgaaWcbaGaaGymaaqabaGccaaISaGaamiDaiaaiMcacaaI9aGaeqiV d0MaaGikaiaadshacaaIPaGaaGilaiaaywW7caWGrbGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaaI9aGaeqyVd4MaaGikaiaadshacaaI PaGaaGilaiaaywW7caaIWaGaeyizImQaamiDaiabgsMiJkaadsfaca aIUaaaaa@523F@  (2.4)

 

Функции μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  управляющие воздействия (граничные управления) с условиями сопряжения в точке x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  соединения участков

Q(00,t)=Q(0+0,t), a 1 2 ρ 1 Q(x,t) x | x=00 = a 2 2 ρ 2 Q(x,t) x | x=0+0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaaicdacqGHsislca aIWaGaaGilaiaadshacaaIPaGaaGypaiaadgfacaaIOaGaaGimaiab gUcaRiaaicdacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaadggada qhaaWcbaGaaGymaaqaaiaaikdaaaGccqaHbpGCdaWgaaWcbaGaaGym aaqabaGcdaWcaaqaaiabgkGi2kaadgfacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaqaaiabgkGi2kaadIhaaaGaaGiFamaaBaaaleaacaWG 4bGaaGypaiaaicdacqGHsislcaaIWaaabeaakiaai2dacaWGHbWaa0 baaSqaaiaaikdaaeaacaaIYaaaaOGaeqyWdi3aaSbaaSqaaiaaikda aeqaaOWaaSaaaeaacqGHciITcaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaeaacqGHciITcaWG4baaaiaaiYhadaWgaaWcbaGaamiE aiaai2dacaaIWaGaey4kaSIaaGimaaqabaGccaaIUaaaaa@6995@  (2.5)

Распределенный кусочно однородный процесс (2.2) можно охарактеризовать как динамическую систему переменной структуры (см. [19]). Уравнение (2.2) характеризует математическая модель продольных (либо поперечных) колебаний стержня (струны) соответственно, где ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@337D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  плотность, k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  модуль упругости (натяжение струны).

Пусть классические условия (начальные и конечные) имеют вид

3Q(x,0)= φ 0 (x), Q(x,t) t | t=0 = ψ 0 (x), l 1 xl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamyuaiaaiIcacaWG4bGaaG ilaiaaicdacaaIPaGaaGypaiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8+aaSaaaeaacqGHciITca WGrbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG 0baaaiaaiYhadaWgaaWcbaGaamiDaiaai2dacaaIWaaabeaakiaai2 dacqaHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiMca caaISaGaaGzbVlabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaGccq GHKjYOcaWG4bGaeyizImQaamiBaiaaiYcaaaa@5CB6@  (2.6)

Q(x,T)= φ T (x)= φ m+1 (x), Q t | t=T = ψ T (x)= ψ m+1 (x), l 1 xl. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam ivaiaaiMcacaaI9aGaeqOXdO2aaSbaaSqaaiaadsfaaeqaaOGaaGik aiaadIhacaaIPaGaaGypaiabeA8aQnaaBaaaleaacaWGTbGaey4kaS IaaGymaaqabaGccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVpaalaaa baGaeyOaIyRaamyuaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaale aacaWG0bGaaGypaiaadsfaaeqaaOGaaGypaiabeI8a5naaBaaaleaa caWGubaabeaakiaaiIcacaWG4bGaaGykaiaai2dacqaHipqEdaWgaa WcbaGaamyBaiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGa aGilaiaaywW7cqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaey izImQaamiEaiabgsMiJkaadYgacaaIUaaaaa@67CD@  (2.7)

Пусть также в некоторые определенные моменты времени t k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadUgaaeqaaa aa@33D2@   (k=1,,m) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4Aaiaai2dacaaIXaGaaG ilaiablAciljaaiYcacaWGTbGaaGykaaaa@3914@ :

0= t 0 < t 1 << t m < t m+1 =T, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGypaiaadshadaWgaaWcba GaaGimaaqabaGccaaI8aGaamiDamaaBaaaleaacaaIXaaabeaakiaa iYdacqWIMaYscaaI8aGaamiDamaaBaaaleaacaWGTbaabeaakiaaiY dacaWG0bWaaSbaaSqaaiaad2gacqGHRaWkcaaIXaaabeaakiaai2da caWGubGaaGilaaaa@4380@

известны промежуточные значения функции колебания (прогиба) и значения ее производной (скоростей точек системы) в следующем виде:

A.Q(x, t i )= φ i (x), l 1 xl,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaqGbbGaaeOlaiaaywW7caWGrbGaaG ikaiaadIhacaaISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMca caaI9aGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadIhaca aIPaGaaGilaiaaywW7cqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqa aOGaeyizImQaamiEaiabgsMiJkaadYgacaaISaGaaGzbVlaadMgaca aI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaaiYcaaaa@542A@  (2.8)

B. Q t | t= t j = ψ j (x), l 1 xl,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaqGcbGaaeOlaiaaywW7daWcaaqaai abgkGi2kaadgfaaeaacqGHciITcaWG0baaaiaaiYhadaWgaaWcbaGa amiDaiaai2dacaWG0bWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGypai abeI8a5naaBaaaleaacaWGQbaabeaakiaaiIcacaWG4bGaaGykaiaa iYcacaaMf8UaeyOeI0IaamiBamaaBaaaleaacaaIXaaabeaakiabgs MiJkaadIhacqGHKjYOcaWGSbGaaGilaiaaywW7caWGQbGaaGypaiaa igdacaaISaGaeSOjGSKaaGilaiaad2gacaaISaaaaa@57E3@  (2.9)

C.Q(x, t i )= φ i (x), l 1 xl,i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaqGdbGaaeOlaiaaywW7caWGrbGaaG ikaiaadIhacaaISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMca caaI9aGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadIhaca aIPaGaaGilaiaaywW7cqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqa aOGaeyizImQaamiEaiabgsMiJkaadYgacaaISaGaaGzbVlaadMgaca aI9aGaaGOmaiabeg7aHjabgkHiTiaaigdacaaISaGaaGzbVlabeg7a Hjaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVpaala aabaGaamyBaaqaaiaaikdaaaGaaGilaaaa@60BF@  (2.10)

Q t | t= t j = ψ j (x), l 1 xl,j=2α,α=1,, m 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadgfaaeaacq GHciITcaWG0baaaiaaiYhadaWgaaWcbaGaamiDaiaai2dacaWG0bWa aSbaaeaacaWGQbaabeaaaeqaaOGaaGypaiabeI8a5naaBaaaleaaca WGQbaabeaakiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UaeyOeI0Ia amiBamaaBaaaleaacaaIXaaabeaakiabgsMiJkaadIhacqGHKjYOca WGSbGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXoqycaaISaGa aGzbVlabeg7aHjaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISa GaaGjbVpaalaaabaGaamyBaaqaaiaaikdaaaGaaGOlaaaa@5FCC@

В промежуточных условиях (2.10) предполагается, что m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  четное число.

Замечание 1. Промежуточные значения функции колебания и значения производной функции колебания в условиях (2.10) можно задавать в любой очередности.

Для задач управления с граничными условиями (2.3) будем рассматривать функционал вида

0 T μ 2 (t)dt 1/2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaamaapehabeWcbaGaaGimaa qaaiaadsfaa0Gaey4kIipakiabeY7aTnaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG0bGaaGykaiaadsgacaWG0baacaGLBbGaayzxaaWaaW baaSqabeaacaaIXaGaaG4laiaaikdaaaGccaaISaaaaa@41BC@  (2.11)

а для задач управления с граничными условиями (2.4) будем рассматривать функционал вида

0 T μ 2 (t)+ ν 2 (t) dt 1/2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaamaapehabeWcbaGaaGimaa qaaiaadsfaa0Gaey4kIipakmaabmaabaGaeqiVd02aaWbaaSqabeaa caaIYaaaaOGaaGikaiaadshacaaIPaGaey4kaSIaeqyVd42aaWbaaS qabeaacaaIYaaaaOGaaGikaiaadshacaaIPaaacaGLOaGaayzkaaGa amizaiaadshaaiaawUfacaGLDbaadaahaaWcbeqaaiaaigdacaaIVa GaaGOmaaaakiaai6caaaa@4932@  (2.12)

Предполагается, что функция Q(x,t) C 2 ( Ω T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGaaGik aiabfM6axnaaBaaaleaacaWGubaabeaakiaaiMcaaaa@3DE5@ , где Ω T ={(x,t):x[ l 1 ,l],t[0,T]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaaqaba GccaaI9aGaaG4EaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGOo aiaadIhacqGHiiIZcaaIBbGaeyOeI0IaamiBamaaBaaaleaacaaIXa aabeaakiaaiYcacaWGSbGaaGyxaiaaiYcacaaMe8UaamiDaiabgIGi olaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGyFaaaa@4D9A@ , а функции удовлетворяют условиям φ i (x) C 2 [ l 1 ,l] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaI YaaaaOGaaG4waiabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaGcca aISaGaamiBaiaai2faaaa@4081@  и ψ j (x) C 1 [ l 1 ,l] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOAaaqaba GccaaIOaGaamiEaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaI XaaaaOGaaG4waiabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaGcca aISaGaamiBaiaai2faaaa@4092@ . Кроме того, полагаем, что выполнены условия согласования

μ(0) = φ 0 ( l 1 ), μ ˙ (0) = ψ 0 ( l 1 ), ν(0) = φ 0 (l), ν ˙ (0) = ψ 0 (l), μ( t i ) = φ i ( l 1 ), μ ˙ ( t j ) = ψ j ( l 1 ), ν( t i ) = φ i (l), ν ˙ ( t j ) = ψ j (l), μ(T) = φ T ( l 1 ), μ ˙ (T) = ψ T ( l 1 ), ν(T) = φ T (l), ν ˙ (T) = ψ T (l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeWaiaaaaaqaaiabeY7aTjaaiI cacaaIWaGaaGykaaqaaiaai2dacqaHgpGAdaWgaaWcbaGaaGimaaqa baGccaaIOaGaeyOeI0IaamiBamaaBaaaleaacaaIXaaabeaakiaaiM cacaaISaaabaGaaGzbVlqbeY7aTzaacaGaaGikaiaaicdacaaIPaaa baGaaGypaiabeI8a5naaBaaaleaacaaIWaaabeaakiaaiIcacqGHsi slcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYcaaeaacaaM f8UaeqyVd4MaaGikaiaaicdacaaIPaaabaGaaGypaiabeA8aQnaaBa aaleaacaaIWaaabeaakiaaiIcacaWGSbGaaGykaiaaiYcaaeaacaaM f8UafqyVd4MbaiaacaaIOaGaaGimaiaaiMcaaeaacaaI9aGaeqiYdK 3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadYgacaaIPaGaaGilaaqa aiabeY7aTjaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaa qaaiaai2dacqaHgpGAdaWgaaWcbaGaamyAaaqabaGccaaIOaGaeyOe I0IaamiBamaaBaaaleaacaaIXaaabeaakiaaiMcacaaISaaabaGaaG zbVlqbeY7aTzaacaGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGc caaIPaaabaGaaGypaiabeI8a5naaBaaaleaacaWGQbaabeaakiaaiI cacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYca aeaacaaMf8UaeqyVd4MaaGikaiaadshadaWgaaWcbaGaamyAaaqaba GccaaIPaaabaGaaGypaiabeA8aQnaaBaaaleaacaWGPbaabeaakiaa iIcacaWGSbGaaGykaiaaiYcaaeaacaaMf8UafqyVd4MbaiaacaaIOa GaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcaaeaacaaI9aGaeqiY dK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadYgacaaIPaGaaGilaa qaaiabeY7aTjaaiIcacaWGubGaaGykaaqaaiaai2dacqaHgpGAdaWg aaWcbaGaamivaaqabaGccaaIOaGaeyOeI0IaamiBamaaBaaaleaaca aIXaaabeaakiaaiMcacaaISaaabaGaaGzbVlqbeY7aTzaacaGaaGik aiaadsfacaaIPaaabaGaaGypaiabeI8a5naaBaaaleaacaWGubaabe aakiaaiIcacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGyk aiaaiYcaaeaacaaMf8UaeqyVd4MaaGikaiaadsfacaaIPaaabaGaaG ypaiabeA8aQnaaBaaaleaacaWGubaabeaakiaaiIcacaWGSbGaaGyk aiaaiYcaaeaacaaMf8UafqyVd4MbaiaacaaIOaGaamivaiaaiMcaae aacaaI9aGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGaaGikaiaadYga caaIPaGaaGilaaaaaaa@CF15@  (2.13)

где i=2α1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdacqaHXoqycq GHsislcaaIXaaaaa@3775@ , j=2α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaikdacqaHXoqyaa a@35CE@ , α=1,,m/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI9aGaaGymaiaaiYcacq WIMaYscaaISaGaamyBaiaai+cacaaIYaaaaa@39D3@ .

Для уравнения (2.2) с условиями (2.6) и (2.7) на отрезке [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  сформулированы шесть задач граничного управления с граничными условиями (2.3) и (2.4), с заданными различными условиями (2.8) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.10) на функцию колебания и ее производную в фиксированные промежуточные значения.

Номером 1 обозначим задачи, в которых управление реализуется за счет перемещения только одного конца (для определенности, левого) при закрепленном другом конце.

Задача 1A. Граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8).

Задача 1B. Граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9).

Задача 1С. Граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10).

Сформулируем перечисленные задачи управления 1A, 1B, 1C с указанными граничными условиями (2.3).

Требуется найти такое граничное управление μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , (см. (2.3)), под влиянием которого колебания системы (2.2) с условиями сопряжения (2.5) из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходят в состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая выполнение следующих значений: 

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  (см. (2.8));

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.9));

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Номером 2 обозначим далее задачи, в которых управление реализуется за счет перемещения обоих концов системы.

Задача 2A. Граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8).

Задача 2B. Граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9).

Задача 2C. Граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10).

Сформулируем перечисленные задачи управления 2A, 2B, 2C с указанными граничными условиями (2.4).

Требуется найти такие граничные управления μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@  (см. (2.4)), под влиянием которых колебания системы (2.2) с условиями сопряжения (2.5) из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходят в состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая выполнение следующих значений: 

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  (см. (2.8));

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.9));

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Для уравнения (2.2) с начальными (2.6) и конечными (2.7) условиями на отрезке времени [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  и функционалами (2.11), (2.12) сформулированы шесть задач оптимального граничного управления с граничными условиями (2.3) и (2.4), с заданными различными условиями (2.8) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.10) на функцию колебания и ее производную в определенные промежуточные значения из временного интервала. Сохраняя принятую выше нумерацию задач, отметим задачи оптимального граничного управления дополнительно верхним индексом <<0>>.

Задача 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ A. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8) и минимизирующие функционал (2.11).

Задача 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ B. Оптимальное граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9) и минимизирующие функционал (2.11).

Задача 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ C. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10) и минимизирующие функционал (2.11).

Сформулируем перечисленные задачи 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  A, 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  B, 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  C оптимального граничного управления с условиями (2.3).

Требуется найти оптимальное граничного управление μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@  (см. (2.3)) под воздействием которого колебания системы (2.2) с условиями сопряжения (2.5) из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходят в состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая минимум функционала (2.11) и выполнение следующих заданных значений: 

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  (см. (2.8));

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@ (см. (2.9));

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Задача 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ A. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8) и минимизирующие функционал (2.12).

Задача 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ B. Оптимальное граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9) и минимизирующие функционал (2.12).

Задача 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ C. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10) и минимизирующие функционал (2.12).

Сформулируем перечисленные задачи 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  A, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  B, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  C оптимального граничного управления с условиями (2.4).

Требуется найти такие оптимальные граничные управления μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@  и ν 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C4@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@  (см. (2.4)), под воздействием которых колебания системы (2.2) с условиями сопряжения (2.5) и граничными условиями из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходит в известное состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая минимум функционала (2.12) и выполнение следующих заданных значений:

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@ (см. (2.8)); 

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@ (см. (2.9)); 

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Замечание 2 .Так как во всех задачах управления и оптимального управления в отдельные промежуточные моменты времени t k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadUgaaeqaaa aa@33D2@  ( k=1,,m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad2gaaaa@37AF@  ) заданы или только значения функции колебания, или только значения производной функции колебания (значения скоростей точек), то использовать подход поэтапного исследования задач нецелесообразно.

В данной работе для всех перечисленных задач по единой схеме предлагается конструктивный подход решения, в котором учитывается специфика промежуточных условий.

Схема построения решений сформулированных задач включает следующие шаги:

Шаг 1. Задачи сводятся к задачам управления с распределенными воздействиями с нулевыми граничными условиями.

Шаг 2. При помощи метода разделения переменных полученные задачи сводятся к задачам управления и оптимального управления для обыкновенных дифференциальных уравнений с заданными начальными, конечными и многоточечными промежуточными условиями.

Шаг 3. При помощи методов теории управления и оптимального управления конечномерными системами с многоточечными промежуточными условиями для произвольного числа первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник строятся граничные управления и оптимальные граничные управления, которые представляются в явном аналитическом виде.

3. Сведение исходных задач к задачам с нулевыми граничными условиями. Для выполнения шага 1 из схемы построения решения перейдем к новой переменной:

ξ= a 2 a 1 x, l 1 x0, x, 0 xl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aWaaiqaaeaafaqaae GaeaaaaeaaaeaadaWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaaakiaadIhacaaISaaaba GaaGzbVlabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaaakeaacqGH KjYOcaWG4bGaeyizImQaaGimaiaaiYcaaeaaaeaacaWG4bGaaGilaa qaaiaaywW7caaIWaaabaGaeyizImQaamiEaiabgsMiJkaadYgacaaI SaaaaaGaay5Eaaaaaa@4F25@  (3.1)

что позволит реализовать растяжение или сжатие отрезка l 1 x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdaaaa@39AD@  относительно точки x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ . При этом с учетом (2.1) вместо отрезка l 1 x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdaaaa@39AD@  будем иметь отрезок lξ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbGaeyizImQaeqOVdG NaeyizImQaaGimaaaa@3982@ .

Для функции Q(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376A@  получим на отрезках одинаковой длины одинаковое уравнение

2 Q(ξ,t) t 2 = a 2 2 2 Q(ξ,t) ξ 2 , l ξ0,0tT, a 2 2 2 Q(ξ,t) ξ 2 , 0 ξl,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadgfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aWaai qaaeaafaqaaeGaeaaaaeaaaeaacaWGHbWaa0baaSqaaiaaikdaaeaa caaIYaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcca WGrbGaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaqaaiabgkGi2kab e67a4naaCaaaleqabaGaaGOmaaaaaaGccaaISaaabaGaaGzbVlabgk HiTiaadYgaaeaacqGHKjYOcqaH+oaEcqGHKjYOcaaIWaGaaGilaiaa ywW7caaIWaGaeyizImQaamiDaiabgsMiJkaadsfacaaISaaabaaaba GaamyyamaaDaaaleaacaaIYaaabaGaaGOmaaaakmaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaamyuaiaaiIcacqaH+oaEcaaISa GaamiDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaikda aaaaaOGaaGilaaqaaiaaywW7caaIWaaabaGaeyizImQaeqOVdGNaey izImQaamiBaiaaiYcacaaMf8UaaGimaiabgsMiJkaadshacqGHKjYO caWGubGaaGilaaaaaiaawUhaaaaa@81AE@

или

2 Q(ξ,t) t 2 = a 2 2 2 Q(ξ,t) ξ 2 ,lξl,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadgfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aGaam yyamaaDaaaleaacaaIYaaabaGaaGOmaaaakmaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaamyuaiaaiIcacqaH+oaEcaaISaGaam iDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaikdaaaaa aOGaaGilaiaaywW7cqGHsislcaWGSbGaeyizImQaeqOVdGNaeyizIm QaamiBaiaaiYcacaaMf8UaaGimaiabgsMiJkaadshacqGHKjYOcaWG ubGaaGilaaaa@5FE3@  (3.2)

с граничными условиями

3Q(l,t)=μ(t),Q(l,t)=0,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamyuaiaaiIcacqGHsislca WGSbGaaGilaiaadshacaaIPaGaaGypaiabeY7aTjaaiIcacaWG0bGa aGykaiaaiYcacaaMf8UaamyuaiaaiIcacaWGSbGaaGilaiaadshaca aIPaGaaGypaiaaicdacaaISaGaaGzbVlaaicdacqGHKjYOcaWG0bGa eyizImQaamivaiaaiYcaaaa@4EAD@  (3.3)

Q(l,t)=μ(t),Q(l,t)=ν(t),0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabgkHiTiaadYgaca aISaGaamiDaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGa aGilaiaaywW7caWGrbGaaGikaiaadYgacaaISaGaamiDaiaaiMcaca aI9aGaeqyVd4MaaGikaiaadshacaaIPaGaaGilaiaaywW7caaIWaGa eyizImQaamiDaiabgsMiJkaadsfacaaISaaaaa@514C@  (3.4)

начальными условиями

Q(ξ,0)= φ 0 (ξ), Q(ξ,t) t | t=0 = ψ 0 (ξ),lxl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca aIWaGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaI OaGaeqOVdGNaaGykaiaaiYcacaaMf8+aaSaaaeaacqGHciITcaWGrb GaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaadsha aaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaaicdaaeqaaOGaaGypai abeI8a5naaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaIPaGa aGilaiaaywW7cqGHsislcaWGSbGaeyizImQaamiEaiabgsMiJkaadY gacaaISaaaaa@5E20@  (3.5)

промежуточными условиями

4Q(ξ, t i )= φ i (ξ),lξl,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaamyuaiaaiIcacqaH+oaEca aISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaeqOX dO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabe67a4jaaiMcacaaISa GaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+oaEcqGHKjYOcaWGSbGa aGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilai aad2gacaaISaaaaa@5346@  (3.6)

Q(ξ,t) t | t= t j = ψ j (x),lξl,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadgfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa amiEaiaaiMcacaaISaGaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+o aEcqGHKjYOcaWGSbGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaI SaGaeSOjGSKaaGilaiaad2gacaaISaaaaa@598A@  (3.7)

Q(ξ, t i )= φ i (ξ),lξl,i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacqaHgpGAdaWg aaWcbaGaamyAaaqabaGccaaIOaGaeqOVdGNaaGykaiaaiYcacaaMf8 UaeyOeI0IaamiBaiabgsMiJkabe67a4jabgsMiJkaadYgacaaISaGa aGzbVlaadMgacaaI9aGaaGOmaiabeg7aHjabgkHiTiaaigdacaaISa GaaGzbVlabeg7aHjaai2dacaaIXaGaaGilaiablAciljaaiYcadaWc aaqaaiaad2gaaeaacaaIYaaaaiaaiYcaaaa@5C01@  (3.8)

Q(ξ,t) t | t= t j = ψ j (x),lξl,j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadgfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa amiEaiaaiMcacaaISaGaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+o aEcqGHKjYOcaWGSbGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaH XoqycaaISaGaaGzbVlabeg7aHjaai2dacaaIXaGaaGilaiablAcilj aaiYcadaWcaaqaaiaad2gaaeaacaaIYaaaaiaaiYcaaaa@615C@

конечными условиями

Q(ξ,T)= φ T (ξ), Q(ξ,t) t | t=T = ψ T (ξ),lξl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WGubGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaI OaGaeqOVdGNaaGykaiaaiYcacaaMf8+aaSaaaeaacqGHciITcaWGrb GaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaadsha aaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfaaeqaaOGaaGypai abeI8a5naaBaaaleaacaWGubaabeaakiaaiIcacqaH+oaEcaaIPaGa aGilaiaaywW7cqGHsislcaWGSbGaeyizImQaeqOVdGNaeyizImQaam iBaiaaiYcaaaa@5F62@  (3.9)

и с условиями сопряжения в точке ξ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaaGimaaaa@3501@  соединения участков:

Q(00,t)=Q(0+0,t), a 1 ρ 1 Q(ξ,t) ξ | ξ=00 = a 2 ρ 2 Q(ξ,t) ξ | ξ=0+0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaaicdacqGHsislca aIWaGaaGilaiaadshacaaIPaGaaGypaiaadgfacaaIOaGaaGimaiab gUcaRiaaicdacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaadggada WgaaWcbaGaaGymaaqabaGccqaHbpGCdaWgaaWcbaGaaGymaaqabaGc daWcaaqaaiabgkGi2kaadgfacaaIOaGaeqOVdGNaaGilaiaadshaca aIPaaabaGaeyOaIyRaeqOVdGhaaiaaiYhadaWgaaWcbaGaeqOVdGNa aGypaiaaicdacqGHsislcaaIWaaabeaakiaai2dacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeqyWdi3aaSbaaSqaaiaaikdaaeqaaOWaaSaa aeaacqGHciITcaWGrbGaaGikaiabe67a4jaaiYcacaWG0bGaaGykaa qaaiabgkGi2kabe67a4baacaaI8bWaaSbaaSqaaiabe67a4jaai2da caaIWaGaey4kaSIaaGimaaqabaGccaaIUaaaaa@6CBF@  (3.10)

Отметим, что для простоты и удобства после замены переменной (3.1) все обозначения функций сохранены.

3.1. Сведение неоднородных граничных условий к нулевым граничным условиям. Поскольку граничные условия (3.3), (3.4) неоднородны, будем строить решение уравнения (3.2) в следующем виде:

Q(ξ,t)=V(ξ,t)+W(ξ,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dacaWGwbGaaGikaiabe67a4jaaiYcacaWG0bGa aGykaiabgUcaRiaadEfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPa GaaGilaaaa@452E@  (3.11)

где V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  требующая определения функция с однородными граничными условиями

V(l,t)=V(l,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabgkHiTiaadYgaca aISaGaamiDaiaaiMcacaaI9aGaamOvaiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaaGypaiaaicdacaaISaaaaa@3F68@  (3.12)

а W(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@3770@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  решение уравнения (3.2) с неоднородными граничными условиями

2W(l,t)=μ(t),W(l,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaam4vaiaaiIcacqGHsislca WGSbGaaGilaiaadshacaaIPaGaaGypaiabeY7aTjaaiIcacaWG0bGa aGykaiaaiYcacaaMf8Uaam4vaiaaiIcacaWGSbGaaGilaiaadshaca aIPaGaaGypaiaaicdacaaISaaaaa@467E@  (3.13)

W(l,t)=μ(t),W(l,t)=ν(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabgkHiTiaadYgaca aISaGaamiDaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGa aGilaiaaywW7caWGxbGaaGikaiaadYgacaaISaGaamiDaiaaiMcaca aI9aGaeqyVd4MaaGikaiaadshacaaIPaGaaGOlaaaa@4920@  (3.14)

Функция W(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@3770@  для условий (3.3) и (3.4) представляется в виде

W(ξ,t)= 1 2l (lξ)μ(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa caaIOaGaamiBaiabgkHiTiabe67a4jaaiMcacqaH8oqBcaaIOaGaam iDaiaaiMcacaaISaaaaa@447F@  (3.15)

W(ξ,t)= 1 2l (lξ)μ(t)+(l+ξ)ν(t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeY7aTj aaiIcacaWG0bGaaGykaiabgUcaRiaaiIcacaWGSbGaey4kaSIaeqOV dGNaaGykaiabe27aUjaaiIcacaWG0bGaaGykaaGaay5waiaaw2faai aai6caaaa@5066@  (3.16)

Подстановка (3.11) в (3.2) и учет (3.15), (3.16) дают следующее уравнение для V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@ :

2 V(ξ,t) t 2 = a 2 2 2 V(ξ,t) ξ 2 +F(ξ,t),lξl,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadAfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aGaam yyamaaDaaaleaacaaIYaaabaGaaGOmaaaakmaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaamOvaiaaiIcacqaH+oaEcaaISaGaam iDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaikdaaaaa aOGaey4kaSIaamOraiaaiIcacqaH+oaEcaaISaGaamiDaiaaiMcaca aISaGaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+oaEcqGHKjYOcaWG SbGaaGilaiaaywW7caaIWaGaeyizImQaamiDaiabgsMiJkaadsfaca aISaaaaa@6671@  (3.17)

где

F(ξ,t)= 1 2l (ξl) μ ¨ (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa caaIOaGaeqOVdGNaeyOeI0IaamiBaiaaiMcacuaH8oqBgaWaaiaaiI cacaWG0bGaaGykaiaaiYcaaaa@4478@  (3.18)

F(ξ,t)= 1 2l (ξl) μ ¨ (t)(ξ+l) ν ¨ (t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacqaH+oaEcqGHsislcaWGSbGaaGykaiqbeY7aTz aadaGaaGikaiaadshacaaIPaGaeyOeI0IaaGikaiabe67a4jabgUca RiaadYgacaaIPaGafqyVd4MbamaacaaIOaGaamiDaiaaiMcaaiaawU facaGLDbaacaaIUaaaaa@5074@  (3.19)

Функция V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  удовлетворяет условию (3.10) в точке ξ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaaGimaaaa@3501@ . Следует отметить, что согласно (3.1) имеем

φ 0 ( l 1 ) = φ 0 (l), φ i ( l 1 ) = φ i (l), ψ 0 ( l 1 ) = ψ 0 (l), ψ j ( l 1 ) = ψ j (l), φ T ( l 1 ) = φ T (l), ψ T ( l 1 ) = ψ T (l). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGagaaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBamaaBaaaleaacaaI XaaabeaakiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqaaiaaicdaae qaaOGaaGikaiabgkHiTiaadYgacaaIPaGaaGilaaqaaiaaywW7cqaH gpGAdaWgaaWcbaGaamyAaaqabaGccaaIOaGaeyOeI0IaamiBamaaBa aaleaacaaIXaaabeaakiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqa aiaadMgaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPaGaaGilaaqaai aaywW7cqaHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyOeI0Ia amiBamaaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaaI9aGaeqiYdK 3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPaGa aGilaaqaaiabeI8a5naaBaaaleaacaWGQbaabeaakiaaiIcacqGHsi slcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaai2dacqaH ipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiM cacaaISaaabaGaaGzbVlabeA8aQnaaBaaaleaacaWGubaabeaakiaa iIcacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaai aai2dacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaeyOeI0Ia amiBaiaaiMcacaaISaaabaGaaGzbVlabeI8a5naaBaaaleaacaWGub aabeaakiaaiIcacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGa aGykaaqaaiaai2dacqaHipqEdaWgaaWcbaGaamivaaqabaGccaaIOa GaeyOeI0IaamiBaiaaiMcacaaIUaaaaaaa@8F9A@  (3.20)

3.2. Сведение начальных, промежуточных и конечных условий к соответствующим условиям для неоднородного уравнения. Учитывая выражения (3.15), (3.16) для функции W(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@3770@  и условия согласования (3.20), из известных начальных (3.5), промежуточных (3.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.8) и конечных условий (3.9) получим соответствующие условия для функции V(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A9@ . Для задач граничного управления колебаниями смещением левого конца при закрепленном правом конце, т.е. для функции V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@ , получим следующие условия: начальные

V(ξ,0)= φ 0 (ξ) 1 2l (lξ) φ 0 (l), V(ξ,t) t | t=0 = ψ 0 (ξ) 1 2l (lξ) ψ 0 (l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca aIWaGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaI OaGaeqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaca WGSbaaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeA8aQnaa BaaaleaacaaIWaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiY cacaaMf8+aaSaaaeaacqGHciITcaWGwbGaaGikaiabe67a4jaaiYca caWG0bGaaGykaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaaleaaca WG0bGaaGypaiaaicdaaeqaaOGaaGypaiabeI8a5naaBaaaleaacaaI WaaabeaakiaaiIcacqaH+oaEcaaIPaGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaiaadYgaaaGaaGikaiaadYgacqGHsislcqaH+oaEcaaI PaGaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgkHiTiaadY gacaaIPaGaaGilaaaa@7177@  (3.21)

промежуточные

3V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l),i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamOvaiaaiIcacqaH+oaEca aISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaeqOX dO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaacaaIOaGaamiBaiab gkHiTiabe67a4jaaiMcacqaHgpGAdaWgaaWcbaGaamyAaaqabaGcca aIOaGaeyOeI0IaamiBaiaaiMcacaaISaGaaGzbVlaadMgacaaI9aGa aGymaiaaiYcacqWIMaYscaaISaGaamyBaiaaiYcaaaa@5799@  (3.22)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l),j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5naaBaaa leaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYcaca aMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGTbGa aGilaaaa@5EB7@  (3.23)

V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l),i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacqaHgpGAdaWg aaWcbaGaamyAaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTmaala aabaGaaGymaaqaaiaaikdacaWGSbaaaiaaiIcacaWGSbGaeyOeI0Ia eqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGPbaabeaakiaaiIcacq GHsislcaWGSbGaaGykaiaaiYcacaaMf8UaamyAaiaai2dacaaIYaGa eqySdeMaeyOeI0IaaGymaiaaiYcacaaMf8UaeqySdeMaaGypaiaaig dacaaISaGaeSOjGSKaaGilamaalaaabaGaamyBaaqaaiaaikdaaaGa aGilaaaa@6055@  (3.24)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l),j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5naaBaaa leaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYcaca aMf8UaamOAaiaai2dacaaIYaGaeqySdeMaaGilaiaaywW7cqaHXoqy caaI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaaba GaaGOmaaaacaaISaaaaa@6688@

конечные

V(ξ,T)= φ T (ξ) 1 2l (lξ) φ T (l), V(ξ,t) t | t=T = ψ T (ξ) 1 2l (lξ) ψ T (l). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WGubGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaI OaGaeqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaca WGSbaaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeA8aQnaa BaaaleaacaWGubaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiY cacaaMf8+aaSaaaeaacqGHciITcaWGwbGaaGikaiabe67a4jaaiYca caWG0bGaaGykaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaaleaaca WG0bGaaGypaiaadsfaaeqaaOGaaGypaiabeI8a5naaBaaaleaacaWG ubaabeaakiaaiIcacqaH+oaEcaaIPaGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaiaadYgaaaGaaGikaiaadYgacqGHsislcqaH+oaEcaaI PaGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGaaGikaiabgkHiTiaadY gacaaIPaGaaGOlaaaa@7233@  (3.25)

Для задач граничного управления колебаниями смещением двух концов для функции V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  получим следующие условия: начальные

V(ξ,0) = φ 0 (ξ) 1 2l (lξ) φ 0 (l)+(l+ξ) φ 0 (l) , V(ξ,t) t | t=0 = ψ 0 (ξ) 1 2l (lξ) ψ 0 (l)+(l+ξ) ψ 0 (l) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaGaamOvaiaaiIcacq aH+oaEcaaISaGaaGimaiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqa aiaaicdaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsisldaWcaaqaai aaigdaaeaacaaIYaGaamiBaaaadaWadaqaaiaaiIcacaWGSbGaeyOe I0IaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacqGHsislcaWGSbGaaGykaiabgUcaRiaaiIcacaWGSbGaey4kaSIa eqOVdGNaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WGSbGaaGykaaGaay5waiaaw2faaiaaiYcaaeaadaWcaaqaaiabgkGi 2kaadAfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIy RaamiDaaaacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaaa keaacaaI9aGaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe6 7a4jaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5n aaBaaaleaacaaIWaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiab gUcaRiaaiIcacaWGSbGaey4kaSIaeqOVdGNaaGykaiabeI8a5naaBa aaleaacaaIWaaabeaakiaaiIcacaWGSbGaaGykaaGaay5waiaaw2fa aiaaiYcaaaaaaa@89AD@  (3.26)

промежуточные

3V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l)+(l+ξ) φ i (l) ,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamOvaiaaiIcacqaH+oaEca aISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaeqOX dO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaadaWadaqaaiaaiIca caWGSbGaeyOeI0IaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGPb aabeaakiaaiIcacqGHsislcaWGSbGaaGykaiabgUcaRiaaiIcacaWG SbGaey4kaSIaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGPbaabe aakiaaiIcacaWGSbGaaGykaaGaay5waiaaw2faaiaaiYcacaaMf8Ua amyAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGTbGaaGilaa aa@649F@  (3.27)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l)+(l+ξ) ψ j (l) ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaamaadmaabaGaaGikaiaadYgacqGHsislcqaH+oaEcaaIPaGaeqiY dK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPa Gaey4kaSIaaGikaiaadYgacqGHRaWkcqaH+oaEcaaIPaGaeqiYdK3a aSbaaSqaaiaadQgaaeqaaOGaaGikaiaadYgacaaIPaaacaGLBbGaay zxaaGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGSKa aGilaiaad2gacaaISaaaaa@6BCF@  (3.28)

V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l)+(l+ξ) φ i (l) ,i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacqaHgpGAdaWg aaWcbaGaamyAaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTmaala aabaGaaGymaaqaaiaaikdacaWGSbaaamaadmaabaGaaGikaiaadYga cqGHsislcqaH+oaEcaaIPaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaO GaaGikaiabgkHiTiaadYgacaaIPaGaey4kaSIaaGikaiaadYgacqGH RaWkcqaH+oaEcaaIPaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaG ikaiaadYgacaaIPaaacaGLBbGaayzxaaGaaGilaiaaywW7caWGPbGa aGypaiaaikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXo qycaaI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaa baGaaGOmaaaacaaISaaaaa@6D5B@  (3.29)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l)+(l+ξ) ψ j (l) ,j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaamaadmaabaGaaGikaiaadYgacqGHsislcqaH+oaEcaaIPaGaeqiY dK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPa Gaey4kaSIaaGikaiaadYgacqGHRaWkcqaH+oaEcaaIPaGaeqiYdK3a aSbaaSqaaiaadQgaaeqaaOGaaGikaiaadYgacaaIPaaacaGLBbGaay zxaaGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXoqycaaISaGa aGzbVlabeg7aHjaai2dacaaIXaGaaGilaiablAciljaaiYcadaWcaa qaaiaad2gaaeaacaaIYaaaaiaaiYcaaaa@73A0@

конечные

V(ξ,T) = φ T (ξ) 1 2l (lξ) φ T (l)+(l+ξ) φ T (l) , V(ξ,t) t | t=T = ψ T (ξ) 1 2l (lξ) ψ T (l)+(l+ξ) ψ T (l) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaGaamOvaiaaiIcacq aH+oaEcaaISaGaamivaiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqa aiaadsfaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsisldaWcaaqaai aaigdaaeaacaaIYaGaamiBaaaadaWadaqaaiaaiIcacaWGSbGaeyOe I0IaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGubaabeaakiaaiI cacqGHsislcaWGSbGaaGykaiabgUcaRiaaiIcacaWGSbGaey4kaSIa eqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGubaabeaakiaaiIcaca WGSbGaaGykaaGaay5waiaaw2faaiaaiYcaaeaadaWcaaqaaiabgkGi 2kaadAfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIy RaamiDaaaacaaI8bWaaSbaaSqaaiaadshacaaI9aGaamivaaqabaaa keaacaaI9aGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGaaGikaiabe6 7a4jaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5n aaBaaaleaacaWGubaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiab gUcaRiaaiIcacaWGSbGaey4kaSIaeqOVdGNaaGykaiabeI8a5naaBa aaleaacaWGubaabeaakiaaiIcacaWGSbGaaGykaaGaay5waiaaw2fa aiaai6caaaaaaa@8AA7@  (3.30)

Итак, приходим к задачам управления колебаниями, моделируемыми уравнением (3.17) с однородными граничными условиями (3.12), которые формулируются следующим образом:

Задачи управления с нулевыми граничными условиями.

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@ . Смещение левого конца при закрепленном правом конце. Требуется найти такое граничное управление μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которое переводит колебание системы, описываемое уравнением (3.17), (3.18) с граничными условиями (3.12), из известного начального состояния (3.21) в конечное состояние (3.25), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.22); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.23); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.24).

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaaaaa@3279@ . Смещение двух концов. Требуется найти такие граничные управления μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которые переводят колебание системы, описываемое уравнением (3.17), (3.19) с граничными условиями (3.12), из известного начального состояния (3.26) в конечное состояние (3.30), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.27); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.28); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.29).

Задачи оптимального управления с нулевыми граничными условиями.

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@ . Смещение левого конца при закрепленном правом конце. Требуется найти такое оптимальное граничное управление μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которое переводит колебание системы, описываемое уравнением (3.17), (3.18) с граничными условиями (3.12), из известного начального состояния (3.21) в конечное состояние (3.25), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.22); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.23); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.24), и которое минимизирует функционал (2.11).

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaaaaa@3279@ . Смещение двух концов. Требуется найти такие оптимальные граничные управления μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@  и ν 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C4@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которые переводят колебание системы, описываемое уравнением (3.17), (3.19) с граничными условиями (3.12), из известного начального состояния (3.26) в конечное состояние (3.30), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.27); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.28); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.29), и которые минимизируют функционал (2.12).

4. Решение задачи. Применение метода разделения переменных. Перейдем к выполнению шагов 2 и 3. Будем искать решение уравнения (3.17) в виде

V(ξ,t)= k=1 V k (t)sin πk l ξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOGaamOvamaaBaaaleaacaWGRbaabeaaki aaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiW daNaam4AaaqaaiaadYgaaaGaeqOVdGNaaGOlaaaa@4BC6@  (4.1)

Функции F(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@375F@ , φ i (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37C6@  и ψ j (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37D8@  представим в виде рядов Фурье в базисе {sin(πkξ)/l} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaci4CaiaacMgacaGGUbGaaG ikaiabec8aWjaadUgacqaH+oaEcaaIPaGaaG4laiaadYgacaaI9baa aa@3E20@ , k=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYsaaa@3779@ . Подставим далее их значения вместе с функцией V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  в уравнения (3.17) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.19) и в условия (3.21) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.30). В результате получим

V ¨ k (t)+ λ k 2 V k (t)= F k (t), λ k 2 = a 2 πk l 2 ,k=1,2,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbamaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcqaH7oaBdaqhaaWcbaGa am4AaaqaaiaaikdaaaGccaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaaG ikaiaadshacaaIPaGaaGypaiaadAeadaWgaaWcbaGaam4AaaqabaGc caaIOaGaamiDaiaaiMcacaaISaGaaGzbVlabeU7aSnaaDaaaleaaca WGRbaabaGaaGOmaaaakiaai2dadaqadaqaamaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaakiabec8aWjaadUgaaeaacaWGSbaaaaGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8Uaam4A aiaai2dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@5B6E@  (4.2)

F k (t)= a 2 λ k l μ ¨ (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiabgkHiTmaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadYgaaaGafqiVd0MbamaacaaIOaGaamiDaiaaiMcacaaISaaa aa@4247@  (4.3)

F k (t)= a 2 λ k l ν ¨ (t) 2( 1) k 1 μ ¨ (t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypamaalaaabaGaamyyamaaBaaaleaa caaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadY gaaaWaamWaaeaacuaH9oGBgaWaaiaaiIcacaWG0bGaaGykamaabmaa baGaaGOmaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam 4AaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsislcuaH8oqB gaWaaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaiaai6caaaa@507C@  (4.4)

Для задач под номером 1 (смещение одного конца при закрепленном другом конце) начальные, промежуточные и конечные условия запишутся в виде

2 V k (0)= φ k (0) a 2 λ k l φ 0 (l), V ˙ k (0)= ψ k (0) a 2 λ k l ψ 0 (l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOvamaaBaaaleaacaWGRb aabeaakiaaiIcacaaIWaGaaGykaiaai2dacqaHgpGAdaqhaaWcbaGa am4AaaqaaiaaiIcacaaIWaGaaGykaaaakiabgkHiTmaalaaabaGaam yyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadYgaaaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaG ikaiabgkHiTiaadYgacaaIPaGaaGilaiaaywW7ceWGwbGbaiaadaWg aaWcbaGaam4AaaqabaGccaaIOaGaaGimaiaaiMcacaaI9aGaeqiYdK 3aa0baaSqaaiaadUgaaeaacaaIOaGaaGimaiaaiMcaaaGccqGHsisl daWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacqaH7oaBda WgaaWcbaGaam4AaaqabaGccaWGSbaaaiabeI8a5naaBaaaleaacaaI WaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYcaaaa@6292@  (4.5)

V k ( t i )= φ k (i) a 2 λ k l φ i (l),i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiab eA8aQnaaDaaaleaacaWGRbaabaGaaGikaiaadMgacaaIPaaaaOGaey OeI0YaaSaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaamiBaaaacqaHgpGAdaWgaaWcba GaamyAaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacaaISaGaaGzb VlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaaiY caaaa@52EC@  (4.6)

V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l),j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaiaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacaaI 9aGaeqiYdK3aa0baaSqaaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaa GccqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa cqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGSbaaaiabeI8a5naaBa aaleaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYca caaMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGTb GaaGilaaaa@531B@  (4.7)

V k ( t i )= φ k (i) a 2 λ k l φ i (l),i=2α1,α=1,, m 2 , V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l),j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiaai2dacqaHgpGAdaqhaaWcbaGaam4AaaqaaiaaiIcaca WGPbGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaaBaaaleaacaaI YaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadYgaaa GaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabgkHiTiaadYga caaIPaGaaGilaiaaywW7caWGPbGaaGypaiaaikdacqaHXoqycqGHsi slcaaIXaGaaGilaiaaywW7cqaHXoqycaaI9aGaaGymaiaaiYcacqWI MaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaabaaaba GabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWg aaWcbaGaamOAaaqabaGccaaIPaGaaGypaiabeI8a5naaDaaaleaaca WGRbaabaGaaGikaiaadQgacaaIPaaaaOGaeyOeI0YaaSaaaeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaadU gaaeqaaOGaamiBaaaacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaI OaGaeyOeI0IaamiBaiaaiMcacaaISaGaaGzbVlaadQgacaaI9aGaaG Omaiabeg7aHjaaiYcacaaMf8UaeqySdeMaaGypaiaaigdacaaISaGa eSOjGSKaaGilamaalaaabaGaamyBaaqaaiaaikdaaaGaaGilaaaaaa a@85A3@  (4.8)

V k (T)= φ k (T) a 2 λ k l φ T (l), V ˙ k (T)= ψ k (T) a 2 λ k l ψ T (l). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadsfacaaIPaGaaGypaiabeA8aQnaaDaaaleaacaWGRbaa baGaaGikaiaadsfacaaIPaaaaOGaeyOeI0YaaSaaaeaacaWGHbWaaS baaSqaaiaaikdaaeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaamiBaaaacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaey OeI0IaamiBaiaaiMcacaaISaGaaGzbVlqadAfagaGaamaaBaaaleaa caWGRbaabeaakiaaiIcacaWGubGaaGykaiaai2dacqaHipqEdaqhaa WcbaGaam4AaaqaaiaaiIcacaWGubGaaGykaaaakiabgkHiTmaalaaa baGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaale aacaWGRbaabeaakiaadYgaaaGaeqiYdK3aaSbaaSqaaiaadsfaaeqa aOGaaGikaiabgkHiTiaadYgacaaIPaGaaGOlaaaa@6292@  (4.9)

Здесь F k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@360C@ , φ k (i) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaqhaaWcbaGaam4Aaaqaai aaiIcacaWGPbGaaGykaaaaaaa@36EA@  и ψ k (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaqhaaWcbaGaam4Aaaqaai aaiIcacaWGQbGaaGykaaaaaaa@36FC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коэффициенты Фурье, соответствующие функциям F(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@375F@ , φ i (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37C6@  и ψ j (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37D8@ .

Для задач под номером 2 (смещение обоих концов) начальные, промежуточные и конечные условия запишутся в виде

V k (0)= φ k (0) a 2 λ k l φ 0 (l) φ 0 (l) 2( 1) k 1 , V ˙ k (0)= ψ k (0) a 2 λ k l ψ 0 (l) ψ 0 (l) 2( 1) k 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiaai2dacqaHgpGA daqhaaWcbaGaam4AaaqaaiaaiIcacaaIWaGaaGykaaaakiabgkHiTm aalaaabaGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaa BaaaleaacaWGRbaabeaakiaadYgaaaWaamWaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacqGHsisl cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiBaiaaiMcada qadaqaaiaaikdacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqa aiaadUgaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLBbGaay zxaaGaaGilaaqaaaqaaiqadAfagaGaamaaBaaaleaacaWGRbaabeaa kiaaiIcacaaIWaGaaGykaiaai2dacqaHipqEdaqhaaWcbaGaam4Aaa qaaiaaiIcacaaIWaGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadYgaaaWaamWaaeaacqaHipqEdaWgaaWcbaGaaGimaaqabaGc caaIOaGaeyOeI0IaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcba GaaGimaaqabaGccaaIOaGaamiBaiaaiMcadaqadaqaaiaaikdacaaI OaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccqGHsi slcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaGilaaaaaaa@806E@  (4.10)

V k ( t i )= φ k (i) a 2 λ k l φ i (l) φ i (l) 2( 1) k 1 ,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiab eA8aQnaaDaaaleaacaWGRbaabaGaaGikaiaadMgacaaIPaaaaOGaey OeI0YaaSaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaamiBaaaadaWadaqaaiabeA8aQn aaBaaaleaacaWGPbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiab gkHiTiabeA8aQnaaBaaaleaacaWGPbaabeaakiaaiIcacaWGSbGaaG ykamaabmaabaGaaGOmaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaa leqabaGaam4AaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawU facaGLDbaacaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacqWI MaYscaaISaGaamyBaiaaiYcaaaa@6323@  (4.11)

V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l) ψ j (l) 2( 1) k 1 ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaiaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacaaI 9aGaeqiYdK3aa0baaSqaaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaa GccqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa cqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGSbaaamaadmaabaGaeq iYdK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaI PaGaeyOeI0IaeqiYdK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadY gacaaIPaWaaeWaaeaacaaIYaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGRbaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaa Gaay5waiaaw2faaiaaiYcacaaMf8UaamOAaiaai2dacaaIXaGaaGil aiablAciljaaiYcacaWGTbGaaGilaaaa@6364@  (4.12)

V k ( t i )= φ k (i) a 2 λ k l φ i (l) φ i (l) 2( 1) k 1 ,i=2α1,α=1,, m 2 , V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l) ψ j (l) 2( 1) k 1 ,j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiaai2dacqaHgpGAdaqhaaWcbaGaam4AaaqaaiaaiIcaca WGPbGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaaBaaaleaacaaI YaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadYgaaa WaamWaaeaacqaHgpGAdaWgaaWcbaGaamyAaaqabaGccaaIOaGaeyOe I0IaamiBaiaaiMcacqGHsislcqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiBaiaaiMcadaqadaqaaiaaikdacaaIOaGaeyOeI0Ia aGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccqGHsislcaaIXaaaca GLOaGaayzkaaaacaGLBbGaayzxaaGaaGilaiaaywW7caWGPbGaaGyp aiaaikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXoqyca aI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaabaGa aGOmaaaacaaISaaabaaabaGabmOvayaacaWaaSbaaSqaaiaadUgaae qaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGyp aiabeI8a5naaDaaaleaacaWGRbaabaGaaGikaiaadQgacaaIPaaaaO GaeyOeI0YaaSaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGa eq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiBaaaadaWadaqaaiabeI 8a5naaBaaaleaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGyk aiabgkHiTiabeI8a5naaBaaaleaacaWGQbaabeaakiaaiIcacaWGSb GaaGykamaabmaabaGaaGOmaiaaiIcacqGHsislcaaIXaGaaGykamaa CaaaleqabaGaam4AaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaai aawUfacaGLDbaacaaISaGaaGzbVlaadQgacaaI9aGaaGOmaiabeg7a HjaaiYcacaaMf8UaeqySdeMaaGypaiaaigdacaaISaGaeSOjGSKaaG ilamaalaaabaGaamyBaaqaaiaaikdaaaGaaGilaaaaaaa@A623@  (4.13)

V k (T)= φ k (T) a 2 λ k l φ T (l) φ T (l) 2( 1) k 1 , V ˙ k (T)= ψ k (T) a 2 λ k l ψ T (l) ψ T (l) 2( 1) k 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaWGubGaaGykaiaai2dacqaHgpGA daqhaaWcbaGaam4AaaqaaiaaiIcacaWGubGaaGykaaaakiabgkHiTm aalaaabaGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaa BaaaleaacaWGRbaabeaakiaadYgaaaWaamWaaeaacqaHgpGAdaWgaa WcbaGaamivaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacqGHsisl cqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaamiBaiaaiMcada qadaqaaiaaikdacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqa aiaadUgaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLBbGaay zxaaGaaGilaaqaaaqaaiqadAfagaGaamaaBaaaleaacaWGRbaabeaa kiaaiIcacaWGubGaaGykaiaai2dacqaHipqEdaqhaaWcbaGaam4Aaa qaaiaaiIcacaWGubGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadYgaaaWaamWaaeaacqaHipqEdaWgaaWcbaGaamivaaqabaGc caaIOaGaeyOeI0IaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcba GaamivaaqabaGccaaIOaGaamiBaiaaiMcadaqadaqaaiaaikdacaaI OaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccqGHsi slcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaGOlaaaaaaa@8168@  (4.14)

Общее решение уравнения (4.2) имеет вид

V k (t)= V k (0)cos λ k t+ 1 λ k V ˙ k (0)sin λ k t+ 1 λ k 0 t F k (τ)sin λ k (tτ)dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadAfadaWgaaWcbaGaam4Aaaqa baGccaaIOaGaaGimaiaaiMcaciGGJbGaai4BaiaacohacqaH7oaBda WgaaWcbaGaam4AaaqabaGccaWG0bGaey4kaSYaaSaaaeaacaaIXaaa baGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaaaakiqadAfagaGaamaaBa aaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiGacohacaGGPbGa aiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadshacqGHRaWkda WcaaqaaiaaigdaaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaaaaOWa a8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamOramaaBa aaleaacaWGRbaabeaakiaaiIcacqaHepaDcaaIPaGaci4CaiaacMga caGGUbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacq GHsislcqaHepaDcaaIPaGaamizaiabes8a0jaai6caaaa@6CF5@  (4.15)

Учитывая начальные (4.5) (или (4.10)), промежуточные (4.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.8) (или (4.11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.13)) и конечные (4.9) (или (4.14)) условия, из (4.15) получим, что функции F k (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@36D8@  для каждого k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  должны удовлетворять интегральным соотношениям в виде

0 T F k (τ)sin λ k (Tτ)dτ= C ˜ 1k (T), 0 T F k (τ)cos λ k (Tτ)dτ= C ˜ 2k (T), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGgbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiab es8a0jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam 4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0jaaiMcacaWGKbGa eqiXdqNaaGypaiqadoeagaacamaaBaaaleaacaaIXaGaam4Aaaqaba GccaaIOaGaamivaiaaiMcacaaISaGaaGzbVpaapehabeWcbaGaaGim aaqaaiaadsfaa0Gaey4kIipakiaadAeadaWgaaWcbaGaam4Aaaqaba GccaaIOaGaeqiXdqNaaGykaiGacogacaGGVbGaai4CaiabeU7aSnaa BaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiXdqNaaG ykaiaadsgacqaHepaDcaaI9aGabm4qayaaiaWaaSbaaSqaaiaaikda caWGRbaabeaakiaaiIcacaWGubGaaGykaiaaiYcaaaa@6D11@  (4.16)

0 t i F k (τ)sin λ k ( t i τ)dτ= C ˜ 1k ( t i ),i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b WaaSbaaeaacaWGPbaabeaaa0Gaey4kIipakiaadAeadaWgaaWcbaGa am4AaaqabaGccaaIOaGaeqiXdqNaaGykaiGacohacaGGPbGaaiOBai abeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqa aiaadMgaaeqaaOGaeyOeI0IaeqiXdqNaaGykaiaayIW7caWGKbGaeq iXdqNaaGypaiqadoeagaacamaaBaaaleaacaaIXaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaISaGaaG zbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaa iYcaaaa@5C1E@  (4.17)

0 t j F k (τ)sin λ k ( t j τ)dτ= C ˜ 2k ( t j ),j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b WaaSbaaeaacaWGQbaabeaaa0Gaey4kIipakiaadAeadaWgaaWcbaGa am4AaaqabaGccaaIOaGaeqiXdqNaaGykaiGacohacaGGPbGaaiOBai abeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqa aiaadQgaaeqaaOGaeyOeI0IaeqiXdqNaaGykaiaayIW7caWGKbGaeq iXdqNaaGypaiqadoeagaacamaaBaaaleaacaaIYaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacaaISaGaaG zbVlaadQgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaa iYcaaaa@5C23@  (4.18)

0 t i F k (τ)sin λ k ( t i τ)dτ= C ˜ 1k ( t i ),i=2α1,α=1,, m 2 , 0 t j F k (τ)sin λ k ( t j τ)dτ= C ˜ 2k ( t j ),j=2α,α=1,., m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaWaa8qCaeqaleaaca aIWaaabaGaamiDamaaBaaabaGaamyAaaqabaaaniabgUIiYdGccaWG gbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiabes8a0jaaiMcaciGGZb GaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGPbaabeaakiabgkHiTiabes8a0jaaiMcaca aMi8Uaamizaiabes8a0jaai2daceWGdbGbaGaadaWgaaWcbaGaaGym aiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGcca aIPaGaaGilaiaaywW7caWGPbGaaGypaiaaikdacqaHXoqycqGHsisl caaIXaGaaGilaiaaywW7cqaHXoqycaaI9aGaaGymaiaaiYcacqWIMa YscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaabaWaa8qC aeqaleaacaaIWaaabaGaamiDamaaBaaabaGaamOAaaqabaaaniabgU IiYdGccaWGgbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiabes8a0jaa iMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiabgkHiTiabes8a 0jaaiMcacaaMi8Uaamizaiabes8a0jaai2daceWGdbGbaGaadaWgaa WcbaGaaGOmaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOA aaqabaGccaaIPaGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXo qycaaISaGaaGzbVlabeg7aHjaai2dacaaIXaGaaGilaiaai6cacqWI MaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaaaaaa@9893@  (4.19)

где приняты обозначения

C ˜ 1k (T)= λ k V k (T) λ k V k (0)cos λ k T V ˙ k (0)sin λ k T, C ˜ 2k (T)= V ˙ k (T)+ λ k V k (0)sin λ k T V ˙ k (0)cos λ k T, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGabm4qayaaiaWaaS baaSqaaiaaigdacaWGRbaabeaakiaaiIcacaWGubGaaGykaiaai2da cqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGwbWaaSbaaSqaaiaadU gaaeqaaOGaaGikaiaadsfacaaIPaGaeyOeI0Iaeq4UdW2aaSbaaSqa aiaadUgaaeqaaOGaamOvamaaBaaaleaacaWGRbaabeaakiaaiIcaca aIWaGaaGykaiGacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadsfacqGHsislceWGwbGbaiaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaaGimaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaWGubGaaGilaaqaaiqadoeagaacam aaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamivaiaaiMcacaaI 9aGabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsfaca aIPaGaey4kaSIaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamOvamaa BaaaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiGacohacaGGPb GaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadsfacqGHsisl ceWGwbGbaiaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaaGimaiaaiM caciGGJbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4AaaqabaGc caWGubGaaGilaaaaaaa@7E23@  (4.20)

C ˜ 1k ( t i )= λ k V k ( t i ) λ k V k (0)cos λ k t i V ˙ k (0)sin λ k t i ,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGymai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaI PaGaaGypaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadAfadaWgaa WcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaWGPbaabeaa kiaaiMcacqGHsislcqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGwb WaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaIPaGaci4yaiaa c+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiDamaaBa aaleaacaWGPbaabeaakiabgkHiTiqadAfagaGaamaaBaaaleaacaWG RbaabeaakiaaiIcacaaIWaGaaGykaiGacohacaGGPbGaaiOBaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWcbaGaamyAaaqa baGccaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYsca aISaGaamyBaiaaiYcaaaa@669B@  (4.21)

C ˜ 2k ( t j )= V ˙ k ( t j )+ λ k V k (0)sin λ k t j V ˙ k (0)cos λ k t j ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGOmai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaI PaGaaGypaiqadAfagaGaamaaBaaaleaacaWGRbaabeaakiaaiIcaca WG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiabgUcaRiabeU7aSnaa BaaaleaacaWGRbaabeaakiaadAfadaWgaaWcbaGaam4AaaqabaGcca aIOaGaaGimaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWc baGaam4AaaqabaGccaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0 IabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaI PaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaO GaamiDamaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8UaamOAaiaa i2dacaaIXaGaaGilaiablAciljaaiYcacaWGTbGaaGilaaaa@63C5@  (4.22)

C ˜ 1k ( t i )= λ k V k ( t i ) λ k V k (0)cos λ k t i V ˙ k (0)sin λ k t i ,i=2α1,α=1,, m 2 , C ˜ 2k ( t j )= V ˙ k ( t j )+ λ k V k (0)sin λ k t j V ˙ k (0)cos λ k t j ,j=2α,α=1,., m 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGabm4qayaaiaWaaS baaSqaaiaaigdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaa dMgaaeqaaOGaaGykaiaai2dacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWc baGaamyAaaqabaGccaaIPaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaadU gaaeqaaOGaamOvamaaBaaaleaacaWGRbaabeaakiaaiIcacaaIWaGa aGykaiGacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislceWGwbGbaiaa daWgaaWcbaGaam4AaaqabaGccaaIOaGaaGimaiaaiMcaciGGZbGaai yAaiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWG0bWaaSba aSqaaiaadMgaaeqaaOGaaGilaiaaywW7caWGPbGaaGypaiaaikdacq aHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXoqycaaI9aGaaGym aiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaaca aISaaabaGabm4qayaaiaWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa iIcacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaai2daceWGwb GbaiaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaa caWGQbaabeaakiaaiMcacqGHRaWkcqaH7oaBdaWgaaWcbaGaam4Aaa qabaGccaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaI PaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaO GaamiDamaaBaaaleaacaWGQbaabeaakiabgkHiTiqadAfagaGaamaa BaaaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiGacogacaGGVb Gaai4CaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWc baGaamOAaaqabaGccaaISaGaaGzbVlaadQgacaaI9aGaaGOmaiabeg 7aHjaaiYcacaaMf8UaeqySdeMaaGypaiaaigdacaaISaGaaGOlaiab lAciljaaiYcadaWcaaqaaiaad2gaaeaacaaIYaaaaiaai6caaaaaaa@AAB4@  (4.23)

Отметим, что задачам управления и оптимального управления с условиями A соответствуют интегральные соотношения (4.16), (4.17), задачам с условиями B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  соотношения (4.16), (4.18), а задачам с условиями C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  соотношения (4.16), (4.19). Приведем дальнейшее построение решения (шаг 3 схемы) для задач граничного управления колебаниями, выделяя построение смещением левого конца при закрепленном правом конце и смещением двух концов.

4.1. Построение решения задач граничного управления колебаниями смещением левого конца при закрепленном правом конце. Подставляя выражение функции F k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@360C@  из (4.3) в соотношения (4.16) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.19) и интегрируя по частям с учетом условий согласования (2.13), получим из (4.16) следующие соотношения:

0 T μ(τ)sin λ k (Tτ)dτ= C 1k (T), 0 T μ(τ)cos λ k (Tτ)dτ= C 2k (T), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiGacohacaGG PbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGub GaeyOeI0IaeqiXdqNaaGykaiaadsgacqaHepaDcaaI9aGaam4qamaa BaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaamivaiaaiMcacaaISa GaaGzbVpaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiab eY7aTjaaiIcacqaHepaDcaaIPaGaci4yaiaac+gacaGGZbGaeq4UdW 2aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaD caaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaaiaaikdaca WGRbaabeaakiaaiIcacaWGubGaaGykaiaaiYcaaaa@6C7D@  (4.24)

а из (4.17), (4.18) и (4.19) получим следующие соотношения:

0 T μ(τ) h 1k (1) (τ)dτ= C 1k ( t 1 ), 0 T μ(τ) h 1k (m) (τ)dτ= C 1k ( t m ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadIgadaqh aaWcbaGaaGymaiaadUgaaeaacaaIOaGaaGymaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaiaadsgacqaHepaDcaaI9aGaam4qamaaBaaaleaa caaIXaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiMcacaaISaGaaGzbVpaapehabeWcbaGaaGimaaqaaiaadsfa a0Gaey4kIipakiabeY7aTjaaiIcacqaHepaDcaaIPaGaamiAamaaDa aaleaacaaIXaGaam4AaaqaaiaaiIcacaWGTbGaaGykaaaakiaaiIca cqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaai aaigdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaad2gaaeqa aOGaaGykaiaaiYcaaaa@69FF@  (4.25)

0 T μ(τ) h 2k (1) (τ)dτ= C 2k ( t 1 ), 0 T μ(τ) h 2k (m) (τ)dτ= C 2k ( t m ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadIgadaqh aaWcbaGaaGOmaiaadUgaaeaacaaIOaGaaGymaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaiaadsgacqaHepaDcaaI9aGaam4qamaaBaaaleaa caaIYaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiMcacaaISaGaaGzbVpaapehabeWcbaGaaGimaaqaaiaadsfa a0Gaey4kIipakiabeY7aTjaaiIcacqaHepaDcaaIPaGaamiAamaaDa aaleaacaaIYaGaam4AaaqaaiaaiIcacaWGTbGaaGykaaaakiaaiIca cqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaai aaikdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaad2gaaeqa aOGaaGykaiaaiYcaaaa@6A03@  (4.26)

0 T μ(τ) h 1k (i) (τ)dτ= C 1k ( t i ),i=2α1,α=1,, m 2 , 0 T μ(τ) h 2k (j) (τ)dτ= C 2k ( t j ),j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOGaeqiVd0MaaGikaiabes8a0jaa iMcacaWGObWaa0baaSqaaiaaigdacaWGRbaabaGaaGikaiaadMgaca aIPaaaaOGaaGikaiabes8a0jaaiMcacaWGKbGaeqiXdqNaaGypaiaa doeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadshadaWgaa WcbaGaamyAaaqabaGccaaIPaGaaGilaiaaywW7caWGPbGaaGypaiaa ikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXoqycaaI9a GaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOm aaaacaaISaaabaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaeqiVd0MaaGikaiabes8a0jaaiMcacaWGObWaa0baaSqaaiaa ikdacaWGRbaabaGaaGikaiaadQgacaaIPaaaaOGaaGikaiabes8a0j aaiMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGaaGOmaiaa dUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPa GaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXoqycaaISaGaaGzb Vlabeg7aHjaai2dacaaIXaGaaGilaiablAciljaaiYcadaWcaaqaai aad2gaaeaacaaIYaaaaiaaiYcaaaaaaa@8A93@  (4.27)

где

C 1k (T)= 1 λ k 2 λ k l a 2 C ˜ 1k (T)+ X 1k , C 2k (T)= 1 λ k 2 λ k l a 2 C ˜ 2k (T)+ X 2k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdacaWGRb aabeaakiaaiIcacaWGubGaaGykaiaai2dadaWcaaqaaiaaigdaaeaa cqaH7oaBdaqhaaWcbaGaam4AaaqaaiaaikdaaaaaaOWaamWaaeaada WcaaqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadYgaaeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaaakiqadoeagaacamaaBaaaleaaca aIXaGaam4AaaqabaGccaaIOaGaamivaiaaiMcacqGHRaWkcaWGybWa aSbaaSqaaiaaigdacaWGRbaabeaaaOGaay5waiaaw2faaiaaiYcaca aMf8Uaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamiv aiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaeq4UdW2aa0baaSqaai aadUgaaeaacaaIYaaaaaaakmaadmaabaWaaSaaaeaacqaH7oaBdaWg aaWcbaGaam4AaaqabaGccaWGSbaabaGaamyyamaaBaaaleaacaaIYa aabeaaaaGcceWGdbGbaGaadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGa aGikaiaadsfacaaIPaGaey4kaSIaamiwamaaBaaaleaacaaIYaGaam 4AaaqabaaakiaawUfacaGLDbaacaaISaaaaa@6950@

C 1k ( t i )= 1 λ k 2 λ k l a 2 C ˜ 1k ( t i )+ X 1k (i) ,i=1,,m; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdacaWGRb aabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaa i2dadaWcaaqaaiaaigdaaeaacqaH7oaBdaqhaaWcbaGaam4Aaaqaai aaikdaaaaaaOWaamWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadYgaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaki qadoeagaacamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaamiD amaaBaaaleaacaWGPbaabeaakiaaiMcacqGHRaWkcaWGybWaa0baaS qaaiaaigdacaWGRbaabaGaaGikaiaadMgacaaIPaaaaaGccaGLBbGa ayzxaaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaeSOjGS KaaGilaiaad2gacaaI7aaaaa@59DD@

C 2k ( t j )= 1 λ k 2 λ k l a 2 C ˜ 2k ( t j )+ X 2k (j) ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdacaWGRb aabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaa i2dadaWcaaqaaiaaigdaaeaacqaH7oaBdaqhaaWcbaGaam4Aaaqaai aaikdaaaaaaOWaamWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadYgaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaki qadoeagaacamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamiD amaaBaaaleaacaWGQbaabeaakiaaiMcacqGHRaWkcaWGybWaa0baaS qaaiaaikdacaWGRbaabaGaaGikaiaadQgacaaIPaaaaaGccaGLBbGa ayzxaaGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGS KaaGilaiaad2gacaaISaaaaa@59D5@

а также

X 1k = λ k φ T (l) ψ 0 (l)sin λ k T λ k φ 0 (l)cos λ k T, X 2k = ψ T (l) ψ 0 (l)cos λ k T+ λ k φ 0 (l)sin λ k T, X 1k (i) = λ k φ i (l) ψ 0 (l)sin λ k t i λ k φ 0 (l)cos λ k t i , X 2k (j) = ψ j (l) ψ 0 (l)cos λ k t j + λ k φ 0 (l)sin λ k t j , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeabcaaaaeaacaWGybWaaSbaaS qaaiaaigdacaWGRbaabeaaaOqaaiaai2dacqaH7oaBdaWgaaWcbaGa am4AaaqabaGccqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaey OeI0IaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcbaGaaGimaaqa baGccaaIOaGaeyOeI0IaamiBaiaaiMcaciGGZbGaaiyAaiaac6gacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGubGaeyOeI0Iaeq4UdW2a aSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgkHiTiaadYgacaaIPaGaci4yaiaac+gacaGGZbGaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaamivaiaaiYcaaeaacaWGybWaaS baaSqaaiaaikdacaWGRbaabeaaaOqaaiaai2dacqaHipqEdaWgaaWc baGaamivaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacqGHsislcq aHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBaiaa iMcaciGGJbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaWGubGaey4kaSIaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaeqOX dO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPa Gaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGa amivaiaaiYcaaeaacaWGybWaa0baaSqaaiaaigdacaWGRbaabaGaaG ikaiaadMgacaaIPaaaaaGcbaGaaGypaiabeU7aSnaaBaaaleaacaWG RbaabeaakiabeA8aQnaaBaaaleaacaWGPbaabeaakiaaiIcacqGHsi slcaWGSbGaaGykaiabgkHiTiabeI8a5naaBaaaleaacaaIWaaabeaa kiaaiIcacqGHsislcaWGSbGaaGykaiGacohacaGGPbGaaiOBaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWcbaGaamyAaaqa baGccqGHsislcqaH7oaBdaWgaaWcbaGaam4AaaqabaGccqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcaciGG JbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWG0b WaaSbaaSqaaiaadMgaaeqaaOGaaGilaaqaaiaadIfadaqhaaWcbaGa aGOmaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaaaakeaacaaI9aGaeq iYdK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaI PaGaeyOeI0IaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgk HiTiaadYgacaaIPaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqa aiaadUgaaeqaaOGaamiDamaaBaaaleaacaWGQbaabeaakiabgUcaRi abeU7aSnaaBaaaleaacaWGRbaabeaakiabeA8aQnaaBaaaleaacaaI WaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiGacohacaGGPbGaai OBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWcbaGa amOAaaqabaGccaaISaaaaaaa@E17A@  (4.28)

h 1k (i) (τ)= sin λ k ( t i τ), 0τ t i , 0, t i <τT, h 2k (j) (τ)= cos λ k ( t j τ), 0τ t j , 0, t j <τT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaa0baaSqaaiaaigdacaWGRb aabaGaaGikaiaadMgacaaIPaaaaOGaaGikaiabes8a0jaaiMcacaaI 9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaaciGGZbGaaiyAaiaac6gacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaa caWGPbaabeaakiabgkHiTiabes8a0jaaiMcacaaISaaabaGaaGzbVd qaaiaaicdacqGHKjYOcqaHepaDcqGHKjYOcaWG0bWaaSbaaSqaaiaa dMgaaeqaaOGaaGilaaqaaaqaaiaaicdacaaISaaabaGaaGzbVdqaai aadshadaWgaaWcbaGaamyAaaqabaGccaaI8aGaeqiXdqNaeyizImQa amivaiaaiYcaaaaacaGL7baacaaMf8UaaGzbVlaaywW7caaMf8Uaam iAamaaDaaaleaacaaIYaGaam4AaaqaaiaaiIcacaWGQbGaaGykaaaa kiaaiIcacqaHepaDcaaIPaGaaGypamaaceaabaqbaeaabiabaaaaba aabaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccqGHsislcqaHep aDcaaIPaGaaGilaaqaaiaaywW7aeaacaaIWaGaeyizImQaeqiXdqNa eyizImQaamiDamaaBaaaleaacaWGQbaabeaakiaaiYcaaeaaaeaaca aIWaGaaGilaaqaaiaaywW7aeaacaWG0bWaaSbaaSqaaiaadQgaaeqa aOGaaGipaiabes8a0jabgsMiJkaadsfacaaIUaaaaaGaay5Eaaaaaa@901B@ (4.29)

Введем следующие обозначения:

H ¯ k (a) (τ)= sin λ k (Tτ) cos λ k (Tτ) h 1k (1) (τ) h 1k (m) (τ) T , C k (a) = C 1k (T) C 2k (T) C 1k ( t 1 ) C 1k ( t m ) T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGabmisayaara Waa0baaSqaaiaadUgaaeaacaaIOaGaamyyaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqabuaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiGacogacaGGVbGaai4CaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiX dqNaaGykaaqaaiaadIgadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOa GaaGymaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiablAcilbqa aiaadIgadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOaGaamyBaiaaiM caaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaadsfaaaGccaaISaaabaaabaGaam4qamaaDaaaleaacaWGRb aabaGaaGikaiaadggacaaIPaaaaOGaaGypamaabmaabaqbaeqabeqb aaaabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaam ivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa iIcacaWGubGaaGykaaqaaiaadoeadaWgaaWcbaGaaGymaiaadUgaae qaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGa eSOjGSeabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOa GaamiDamaaBaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGubaaaOGaaGilaaaaaaa@83BB@  (4.30)

H ¯ k (b) (τ)= sin λ k (Tτ) cos λ k (Tτ) h 2k (1) (τ) h 2k (m) (τ) T , C k (b) = C 1k (T) C 2k (T) C 2k ( t 1 ) C 2k ( t m ) T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGabmisayaara Waa0baaSqaaiaadUgaaeaacaaIOaGaamOyaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqabuaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiGacogacaGGVbGaai4CaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiX dqNaaGykaaqaaiaadIgadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIOa GaaGymaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiablAcilbqa aiaadIgadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIOaGaamyBaiaaiM caaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaadsfaaaGccaaISaaabaaabaGaam4qamaaDaaaleaacaWGRb aabaGaaGikaiaadkgacaaIPaaaaOGaaGypamaabmaabaqbaeqabeqb aaaabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaam ivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa iIcacaWGubGaaGykaaqaaiaadoeadaWgaaWcbaGaaGOmaiaadUgaae qaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGa eSOjGSeabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOa GaamiDamaaBaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGubaaaOGaaGilaaaaaaa@83C1@  (4.31)

H ¯ k (c) (τ)= sin λ k (Tτ) cos λ k (Tτ) h 1k (1) (τ) h 2k (2) (τ) h 1k (m1) (τ) h 2k (m) (τ) T , C k (c) = C 1k (T) C 2k (T) C 1k ( t 1 ) C 2k ( t 2 ) C 1k ( t m1 ) C 2k ( t m ) T . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGabmisayaara Waa0baaSqaaiaadUgaaeaacaaIOaGaam4yaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqabCaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiGacogacaGGVbGaai4CaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiX dqNaaGykaaqaaiaadIgadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOa GaaGymaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaadIgadaqh aaWcbaGaaGOmaiaadUgaaeaacaaIOaGaaGOmaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaaqaaiablAcilbqaaiaadIgadaqhaaWcbaGaaGym aiaadUgaaeaacaaIOaGaamyBaiabgkHiTiaaigdacaaIPaaaaOGaaG ikaiabes8a0jaaiMcaaeaacaWGObWaa0baaSqaaiaaikdacaWGRbaa baGaaGikaiaad2gacaaIPaaaaOGaaGikaiabes8a0jaaiMcaaaaaca GLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaaGilaaqaaaqaaiaa doeadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGJbGaaGykaaaakiaai2 dadaqadaqaauaabeqabCaaaaqaaiaadoeadaWgaaWcbaGaaGymaiaa dUgaaeqaaOGaaGikaiaadsfacaaIPaaabaGaam4qamaaBaaaleaaca aIYaGaam4AaaqabaGccaaIOaGaamivaiaaiMcaaeaacaWGdbWaaSba aSqaaiaaigdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaig daaeqaaOGaaGykaaqaaiaadoeadaWgaaWcbaGaaGOmaiaadUgaaeqa aOGaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaaabaGaeS OjGSeabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGTbGaeyOeI0IaaGymaaqabaGccaaIPaaaba Gaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamiDamaa BaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOaGaayzkaaWaaWbaaS qabeaacaWGubaaaOGaaGOlaaaaaaa@A3AF@  (4.32)

Тогда, с учетом введенных обозначений (4.30) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.32), соотношения (4.24) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.27) запишутся следующим образом:

0 T H ¯ k (δ) (τ) μ (δ) (τ)dτ= C k (δ) ,δ=a,b,c;k=1,2,. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcceWGibGbaebadaqhaaWcbaGaam4AaaqaaiaaiIca cqaH0oazcaaIPaaaaOGaaGikaiabes8a0jaaiMcacqaH8oqBdaahaa WcbeqaaiaaiIcacqaH0oazcaaIPaaaaOGaaGikaiabes8a0jaaiMca caWGKbGaeqiXdqNaaGypaiaadoeadaqhaaWcbaGaam4AaaqaaiaaiI cacqaH0oazcaaIPaaaaOGaaGilaiaaywW7cqaH0oazcaaI9aGaamyy aiaaiYcacaWGIbGaaGilaiaadogacaaI7aGaaGzbVlaadUgacaaI9a GaaGymaiaaiYcacaaIYaGaaGilaiablAciljaai6caaaa@602B@  (4.33)

Здесь в верхнем индексе δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@  обозначения соответствуют задачам со смещением левого конца при закрепленном правом конце с условиями A, B и C.

На практике, как правило, выбираются несколько первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник колебаний и решается задача синтеза управлений, используя методы теории управления конечномерными системами. Поэтому

H n (δ) (τ)= H ¯ 1 (δ) (τ) H ¯ 2 (δ) (τ) H ¯ n (δ) (τ) T , η n (δ) = C 1 (δ) C 2 (δ) C n (δ) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaaGypamaa bmaabaqbaeqabeabaaaabaGabmisayaaraWaa0baaSqaaiaaigdaae aacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaabaGa bmisayaaraWaa0baaSqaaiaaikdaaeaacaaIOaGaeqiTdqMaaGykaa aakiaaiIcacqaHepaDcaaIPaaabaGaeSOjGSeabaGabmisayaaraWa a0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacq aHepaDcaaIPaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaa kiaaiYcacaaMf8Uaeq4TdG2aa0baaSqaaiaad6gaaeaacaaIOaGaeq iTdqMaaGykaaaakiaai2dadaqadaqaauaabeqabqaaaaqaaiaadoea daqhaaWcbaGaaGymaaqaaiaaiIcacqaH0oazcaaIPaaaaaGcbaGaam 4qamaaDaaaleaacaaIYaaabaGaaGikaiabes7aKjaaiMcaaaaakeaa cqWIMaYsaeaacaWGdbWaa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdq MaaGykaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadsfaaaaa aa@7207@  (4.34)

с размерностями H n (δ) (τ)(n(m+2)×1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaeyOeI0Ia aGikaiaad6gacaaIOaGaamyBaiabgUcaRiaaikdacaaIPaGaey41aq RaaGymaiaaiMcaaaa@43F4@ , η n (δ) (n(m+2)×1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaeyOeI0IaaGikaiaad6gacaaIOaGa amyBaiabgUcaRiaaikdacaaIPaGaey41aqRaaGymaiaaiMcaaaa@41A9@  при всех δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ .

Для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник соотношение (4.33), с учетом (4.34), запишется в виде

0 T H n (δ) (τ) μ n (δ) (τ)dτ= η n (δ) ,δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaeqiT dqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaaGjcVlabeY7aTnaaDa aaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGccaaIOaGaeqiX dqNaaGykaiaadsgacqaHepaDcaaI9aGaeq4TdG2aa0baaSqaaiaad6 gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiYcacaaMf8UaeqiTdqMa aGypaiaadggacaaISaGaamOyaiaaiYcacaWGJbGaaGOlaaaa@5B72@  (4.35)

Из (4.35) вытекает справедливость следующего утверждения.

Теорема 1. Первые n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник системы (4.2), (4.3) с условиями (4.5) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4.9) вполне управляемы тогда и только тогда, когда для любого вектора η n (δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaaaa@3793@  (4.34) можно найти управление μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , удовлетворяющее условию (4.35).

Для произвольного числа первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник управляющее воздействие μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@ , удовлетворяющее интегральному соотношению (4.35), имеет вид (см. [6, 20])

μ n (δ) (t)= H n (δ) (t) T S n (δ) 1 η n (δ) + f n (δ) (t),δ=a,b,c, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaaGypamaa bmaabaGaamisamaaDaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiM caaaGccaaIOaGaamiDaiaaiMcaaiaawIcacaGLPaaadaahaaWcbeqa aiaadsfaaaGcdaqadaqaaiaadofadaqhaaWcbaGaamOBaaqaaiaaiI cacqaH0oazcaaIPaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaeq4TdG2aa0baaSqaaiaad6gaaeaacaaIOaGaeq iTdqMaaGykaaaakiabgUcaRiaadAgadaqhaaWcbaGaamOBaaqaaiaa iIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaaGilaiaayw W7cqaH0oazcaaI9aGaamyyaiaaiYcacaWGIbGaaGilaiaadogacaaI Saaaaa@64FE@  (4.36)

где H n (δ) (t) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaadIeadaqhaaWcbaGaam OBaaqaaiaaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaa caGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaaaa@3BAB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  транспонированная матрица, f n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@393A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  такая вектор-функция, что

0 T H n (δ) (t) f n (δ) (t)dt=0, S n (δ) = 0 T H n (δ) (t) H n (δ) (t) T dt,δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaeqiT dqMaaGykaaaakiaaiIcacaWG0bGaaGykaiaadAgadaqhaaWcbaGaam OBaaqaaiaaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGa amizaiaadshacaaI9aGaaGimaiaaiYcacaaMf8Uaam4uamaaDaaale aacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGccaaI9aWaa8qCaeqa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamisamaaDaaaleaaca WGUbaabaGaaGikaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMca daqadaqaaiaadIeadaqhaaWcbaGaamOBaaqaaiaaiIcacqaH0oazca aIPaaaaOGaaGikaiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaWGubaaaOGaamizaiaadshacaaISaGaaGzbVlabes7aKjaai2 dacaWGHbGaaGilaiaadkgacaaISaGaam4yaiaai6caaaa@70E3@

Здесь S n (δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaaaaa@36BF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  известная матрица размерностью n m+2 ×n m+2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaamOBamaabmaa baGaamyBaiabgUcaRiaaikdaaiaawIcacaGLPaaaaiaawIcacaGLPa aaaaa@3F75@ , det S n (δ) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGKbGaaiyzaiaacshacaWGtbWaa0 baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiabgcMi5kaa icdaaaa@3C15@  при δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ .

Из формулы (4.36) следует, что существует множество управляющих функций, решающих задачи граничных управлений.

Учитывая обозначения (4.29), функции управления μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@  представляются в виде

μ n (δ) (t)= μ n (δ)1 (t), 0t t 1 , μ n (δ)2 (t), t 1 <t t 2 , μ n (δ)m (t), t m1 <t t m , μ n (δ)m+1 (t), t m <tT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaaGypamaa ceaabaqbaeaabuabaaaaaeaaaeaacqaH8oqBdaqhaaWcbaGaamOBaa qaaiaaiIcacqaH0oazcaaIPaGaaGymaaaakiaaiIcacaWG0bGaaGyk aiaaiYcaaeaacaaMf8oabaGaaGimaiabgsMiJkaadshacqGHKjYOca WG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaaqaaaqaaiabeY7aTnaa DaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcacaaIYaaaaOGaaG ikaiaadshacaaIPaGaaGilaaqaaiaaywW7aeaacaWG0bWaaSbaaSqa aiaaigdaaeqaaOGaaGipaiaadshacqGHKjYOcaWG0bWaaSbaaSqaai aaikdaaeqaaOGaaGilaaqaaaqaaiaaywW7cqWIUlstaeaaaeaaaeaa aeaacqaH8oqBdaqhaaWcbaGaamOBaaqaaiaaiIcacqaH0oazcaaIPa GaamyBaaaakiaaiIcacaWG0bGaaGykaiaaiYcaaeaacaaMf8oabaGa amiDamaaBaaaleaacaWGTbGaeyOeI0IaaGymaaqabaGccaaI8aGaam iDaiabgsMiJkaadshadaWgaaWcbaGaamyBaaqabaGccaaISaaabaaa baGaeqiVd02aa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykai aad2gacqGHRaWkcaaIXaaaaOGaaGikaiaadshacaaIPaGaaGilaaqa aiaaywW7aeaacaWG0bWaaSbaaSqaaiaad2gaaeqaaOGaaGipaiaads hacqGHKjYOcaWGubGaaGOlaaaaaiaawUhaaaaa@8FA4@  (4.37)

Подставляя из (4.36) (или из (4.37)) управление μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@  в (4.3), а найденное для F k (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiaadUgaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3917@  выражение MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  в (4.15), получим функцию V k (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3927@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ . Далее, из формулы (4.1) будем иметь

V n (δ) (ξ,t)= k=1 n V k (δ) (t)sin πk l ξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaH+oaEcaaISaGaamiDaiaa iMcacaaI9aWaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUb aaniabggHiLdGccaWGwbWaa0baaSqaaiaadUgaaeaacaaIOaGaeqiT dqMaaGykaaaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBam aalaaabaGaeqiWdaNaam4AaaqaaiaadYgaaaGaeqOVdGNaaGilaaaa @5285@

где

V k (δ) (t)= V k (0)cos λ k t+ 1 λ k V ˙ k (0)sin λ k t+ 1 λ k 0 t F k (δ) (τ)sin λ k (tτ)dτ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaiaai2dacaWG wbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaIPaGaci4yai aac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiDaiab gUcaRmaalaaabaGaaGymaaqaaiabeU7aSnaaBaaaleaacaWGRbaabe aaaaGcceWGwbGbaiaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaaGim aiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4Aaa qabaGccaWG0bGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4UdW2aaSba aSqaaiaadUgaaeqaaaaakmaapehabeWcbaGaaGimaaqaaiaadshaa0 Gaey4kIipakiaadAeadaqhaaWcbaGaam4AaaqaaiaaiIcacqaH0oaz caaIPaaaaOGaaGikaiabes8a0jaaiMcaciGGZbGaaiyAaiaac6gacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiabgkHiTiab es8a0jaaiMcacaWGKbGaeqiXdqNaaGilaaaa@7309@  (4.38)

а функция колебания Q n (δ) (ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaH+oaEcaaISaGaamiDaiaa iMcaaaa@3B9E@ , lξl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbGaeyizImQaeqOVdG NaeyizImQaamiBaaaa@39B9@ , для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник запишется в виде

Q n (δ) (ξ,t)= V n (δ) (ξ,t)+ W n (δ) (ξ,t), W n (δ) (ξ,t)= 1 2l (lξ) μ n (δ) (t),δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaH+oaEcaaISaGaamiDaiaa iMcacaaI9aGaamOvamaaDaaaleaacaWGUbaabaGaaGikaiabes7aKj aaiMcaaaGccaaIOaGaeqOVdGNaaGilaiaadshacaaIPaGaey4kaSIa am4vamaaDaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGcca aIOaGaeqOVdGNaaGilaiaadshacaaIPaGaaGilaiaaywW7caWGxbWa a0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacq aH+oaEcaaISaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGa aGOmaiaadYgaaaGaaGikaiaadYgacqGHsislcqaH+oaEcaaIPaGaeq iVd02aa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaa iIcacaWG0bGaaGykaiaaiYcacaaMf8UaeqiTdqMaaGypaiaadggaca aISaGaamOyaiaaiYcacaWGJbGaaGOlaaaa@7755@  (4.39)

Учитывая обозначения (3.1), функция Q n (δ) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@3AD8@  при l 1 xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaadYgaaaa@39E4@  представляется в виде:

Q n (δ) (x,t)= k=1 n V k (δ) (t)sin πk l 1 x+ 1 2 1 x l 1 μ n (δ) (t), l 1 x0,0tT, k=1 n V k (δ) (t)sin πk l x+ 1 2 1 x l μ n (δ) (t), 0 xl,0tT, δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGypamaaceaabaqbaeaabiabaaaabaaabaWaaabCaeqaleaaca WGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGwbWaa0ba aSqaaiaadUgaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0b GaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdaNaam4Aaaqa aiaadYgadaWgaaWcbaGaaGymaaqabaaaaOGaamiEaiabgUcaRmaala aabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaaIXaGaeyOeI0YaaSaa aeaacaWG4baabaGaamiBamaaBaaaleaacaaIXaaabeaaaaaakiaawI cacaGLPaaacqaH8oqBdaqhaaWcbaGaamOBaaqaaiaaiIcacqaH0oaz caaIPaaaaOGaaGikaiaadshacaaIPaGaaGilaaqaaiaaysW7cqGHsi slcaWGSbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyizImQaamiEaiab gsMiJkaaicdacaaISaGaaGjbVlaaicdacqGHKjYOcaWG0bGaeyizIm QaamivaiaaiYcaaeaaaeaadaaeWbqabSqaaiaadUgacaaI9aGaaGym aaqaaiaad6gaa0GaeyyeIuoakiaadAfadaqhaaWcbaGaam4Aaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaci4Caiaa cMgacaGGUbWaaSaaaeaacqaHapaCcaWGRbaabaGaamiBaaaacaWG4b Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaaigda cqGHsisldaWcaaqaaiaadIhaaeaacaWGSbaaaaGaayjkaiaawMcaai abeY7aTnaaDaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGc caaIOaGaamiDaiaaiMcacaaISaaabaGaaGjbVlaaicdaaeaacqGHKj YOcaWG4bGaeyizImQaamiBaiaaiYcacaaMe8UaaGimaiabgsMiJkaa dshacqGHKjYOcaWGubGaaGilaaaaaiaawUhaaiaaywW7cqaH0oazca aI9aGaamyyaiaaiYcacaWGIbGaaGilaiaadogacaaIUaaaaa@B4E7@  (4.40)

4.2. Построение решения задач граничного управления колебаниями смещением двух концов.Подставим значение функции F k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@360C@  в виде (4.4) в соотношения (4.16) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.19). Интегрируя их по частям с учетом условий согласования (2.11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.13), из (4.16) получим, что функции μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@  для каждого k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  должны удовлетворять интегральным соотношениям в виде

0 T μ(τ)sin λ k (Tτ)dτ 0 T ν(τ)( 1) k sin λ k (Tτ)dτ= C 1k (T), 0 T μ(τ)cos λ k (Tτ)dτ 0 T ν(τ)( 1) k cos λ k (Tτ)dτ= C 2k (T), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOGaeqiVd0MaaGikaiabes8a0jaa iMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamivaiabgkHiTiabes8a0jaaiMcacaWGKbGaeqiXdqNa eyOeI0Yaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeq yVd4MaaGikaiabes8a0jaaiMcacaaIOaGaeyOeI0IaaGymaiaaiMca daahaaWcbeqaaiaadUgaaaGcciGGZbGaaiyAaiaac6gacqaH7oaBda WgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0jaa iMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGaaGymaiaadU gaaeqaaOGaaGikaiaadsfacaaIPaGaaGilaaqaamaapehabeWcbaGa aGimaaqaaiaadsfaa0Gaey4kIipakiabeY7aTjaaiIcacqaHepaDca aIPaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaaGikaiaadsfacqGHsislcqaHepaDcaaIPaGaamizaiabes8a0j abgkHiTmaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiab e27aUjaaiIcacqaHepaDcaaIPaGaaGikaiabgkHiTiaaigdacaaIPa WaaWbaaSqabeaacaWGRbaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2a aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDca aIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaaiaaikdacaWG RbaabeaakiaaiIcacaWGubGaaGykaiaaiYcaaaaaaa@A1AB@  (4.41)

а из (4.17), (4.18) и (4.19) получим следующие интегральные соотношения:

0 T μ(τ) h k (i) (τ)dτ 0 T ν(τ)( 1) k h k (i) (τ)dτ= C 1k ( t i ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadIgadaqh aaWcbaGaam4AaaqaaiaaiIcacaWGPbGaaGykaaaakiaaiIcacqaHep aDcaaIPaGaamizaiabes8a0jabgkHiTmaapehabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakiabe27aUjaaiIcacqaHepaDcaaIPaGaaG ikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamiA amaaDaaaleaacaWGRbaabaGaaGikaiaadMgacaaIPaaaaOGaaGikai abes8a0jaaiMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGa aGymaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqaba GccaaIPaGaaGilaaaa@64D4@  (4.42)

0 T μ(τ) g k (j) (τ)dτ 0 T ν(τ)( 1) k g k (j) (τ)dτ= C 2k ( t j ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadEgadaqh aaWcbaGaam4AaaqaaiaaiIcacaWGQbGaaGykaaaakiaaiIcacqaHep aDcaaIPaGaamizaiabes8a0jabgkHiTmaapehabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakiabe27aUjaaiIcacqaHepaDcaaIPaGaaG ikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaam4z amaaDaaaleaacaWGRbaabaGaaGikaiaadQgacaaIPaaaaOGaaGikai abes8a0jaaiMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGa aGOmaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqaba GccaaIPaGaaGilaaaa@64D6@  (4.43)

0 T μ(τ) h k (i) (τ)dτ 0 T ν(τ)( 1) k h k (i) (τ)dτ= C 1k ( t i ), i=2α1,α=1,, m 2 , 0 T μ(τ) g k (j) (τ)dτ 0 T ν(τ)( 1) k g k (j) (τ)dτ= C 2k ( t j ), j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaadaWdXbqabS qaaiaaicdaaeaacaWGubaaniabgUIiYdGccqaH8oqBcaaIOaGaeqiX dqNaaGykaiaadIgadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGPbGaaG ykaaaakiaaiIcacqaHepaDcaaIPaGaamizaiabes8a0jabgkHiTmaa pehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiabe27aUjaaiI cacqaHepaDcaaIPaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqa beaacaWGRbaaaOGaamiAamaaDaaaleaacaWGRbaabaGaaGikaiaadM gacaaIPaaaaOGaaGikaiabes8a0jaaiMcacaWGKbGaeqiXdqNaaGyp aiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadshada WgaaWcbaGaamyAaaqabaGccaaIPaGaaGilaaqaaiaaywW7aeaacaWG PbGaaGypaiaaikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cq aHXoqycaaI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWG TbaabaGaaGOmaaaacaaISaaabaaabaWaa8qCaeqaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOGaeqiVd0MaaGikaiabes8a0jaaiMcacaWG NbWaa0baaSqaaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaiaadsgacqaHepaDcqGHsisldaWdXbqabSqaaiaa icdaaeaacaWGubaaniabgUIiYdGccqaH9oGBcaaIOaGaeqiXdqNaaG ykaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4Aaaaa kiaadEgadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGQbGaaGykaaaaki aaiIcacqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSba aSqaaiaaikdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadQ gaaeqaaOGaaGykaiaaiYcaaeaacaaMf8oabaGaamOAaiaai2dacaaI YaGaeqySdeMaaGilaiaaywW7cqaHXoqycaaI9aGaaGymaiaaiYcacq WIMaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaaaaaa @B9B5@  (4.44)

где

C 1k (T) = 1 λ k 2 λ k l 2a C ˜ 1k (T)+ X 1k (1) k Y 1k , C 2k (T) = 1 λ k 2 λ k l 2a C ˜ 2k (T)+ X 2k (1) k Y 2k , C 1k ( t i ) = 1 λ k 2 λ k l 2a C ˜ 1k ( t i )+ X 1k (i) (1) k Y 1k (i) , C 2k ( t j ) = 1 λ k 2 λ k l 2a C ˜ 2k ( t j )+ X 2k (j) (1) k Y 2k (j) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWGdbWaaSbaaS qaaiaaigdacaWGRbaabeaakiaaiIcacaWGubGaaGykaaqaaiaai2da daWcaaqaaiaaigdaaeaacqaH7oaBdaqhaaWcbaGaam4Aaaqaaiaaik daaaaaaOWaamWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWGRbaa beaakiaadYgaaeaacaaIYaGaamyyaaaaceWGdbGbaGaadaWgaaWcba GaaGymaiaadUgaaeqaaOGaaGikaiaadsfacaaIPaGaey4kaSIaamiw amaaBaaaleaacaaIXaGaam4AaaqabaGccqGHsislcaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccaWGzbWaaSbaaSqa aiaaigdacaWGRbaabeaaaOGaay5waiaaw2faaiaaiYcaaeaacaaMf8 Uaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamivaiaa iMcaaeaacaaI9aWaaSaaaeaacaaIXaaabaGaeq4UdW2aa0baaSqaai aadUgaaeaacaaIYaaaaaaakmaadmaabaWaaSaaaeaacqaH7oaBdaWg aaWcbaGaam4AaaqabaGccaWGSbaabaGaaGOmaiaadggaaaGabm4qay aaiaWaaSbaaSqaaiaaikdacaWGRbaabeaakiaaiIcacaWGubGaaGyk aiabgUcaRiaadIfadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGaeyOeI0 IaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGa amywamaaBaaaleaacaaIYaGaam4AaaqabaaakiaawUfacaGLDbaaca aISaaabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGPbaabeaakiaaiMcaaeaacaaI9aWaaSaaae aacaaIXaaabaGaeq4UdW2aa0baaSqaaiaadUgaaeaacaaIYaaaaaaa kmaadmaabaWaaSaaaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaGcca WGSbaabaGaaGOmaiaadggaaaGabm4qayaaiaWaaSbaaSqaaiaaigda caWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaG ykaiabgUcaRiaadIfadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOaGa amyAaiaaiMcaaaGccqGHsislcaaIOaGaeyOeI0IaaGymaiaaiMcada ahaaWcbeqaaiaadUgaaaGccaWGzbWaa0baaSqaaiaaigdacaWGRbaa baGaaGikaiaadMgacaaIPaaaaaGccaGLBbGaayzxaaGaaGilaaqaai aaywW7caWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaaiIcacaWG 0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaqaaiaai2dadaWcaaqaai aaigdaaeaacqaH7oaBdaqhaaWcbaGaam4AaaqaaiaaikdaaaaaaOWa amWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadY gaaeaacaaIYaGaamyyaaaaceWGdbGbaGaadaWgaaWcbaGaaGOmaiaa dUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPa Gaey4kaSIaamiwamaaDaaaleaacaaIYaGaam4AaaqaaiaaiIcacaWG QbGaaGykaaaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaam4AaaaakiaadMfadaqhaaWcbaGaaGOmaiaadUgaaeaa caaIOaGaamOAaiaaiMcaaaaakiaawUfacaGLDbaacaaISaaaaaaa@CE06@

h k (i) (τ)= sin λ k ( t i τ), 0τ t i , 0, t i <τT, g k (j) (τ)= cos λ k ( t j τ), 0τ t j , 0, t j <τT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaa0baaSqaaiaadUgaaeaaca aIOaGaamyAaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiaai2dadaGa baqaauaabaqacqaaaaqaaaqaaiGacohacaGGPbGaaiOBaiabeU7aSn aaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMga aeqaaOGaeyOeI0IaeqiXdqNaaGykaiaaiYcaaeaacaaMf8oabaGaaG imaiabgsMiJkabes8a0jabgsMiJkaadshadaWgaaWcbaGaamyAaaqa baGccaaISaaabaaabaGaaGimaiaaiYcaaeaacaaMf8oabaGaamiDam aaBaaaleaacaWGPbaabeaakiaaiYdacqaHepaDcqGHKjYOcaWGubGa aGilaaaaaiaawUhaaiaaywW7caaMf8Uaam4zamaaDaaaleaacaWGRb aabaGaaGikaiaadQgacaaIPaaaaOGaaGikaiabes8a0jaaiMcacaaI 9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaaciGGJbGaai4Baiaacohacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaa caWGQbaabeaakiabgkHiTiabes8a0jaaiMcacaaISaaabaGaaGzbVd qaaiaaicdacqGHKjYOcqaHepaDcqGHKjYOcaWG0bWaaSbaaSqaaiaa dQgaaeqaaOGaaGilaaqaaaqaaiaaicdacaaISaaabaGaaGzbVdqaai aadshadaWgaaWcbaGaamOAaaqabaGccaaI8aGaeqiXdqNaeyizImQa amivaiaaiYcaaaaacaGL7baaaaa@8B85@  (4.45)

Y 1k = λ k φ T (l) ψ 0 (l)sin λ k T λ k φ 0 (l)cos λ k T, Y 2k = ψ T (l) ψ 0 (l)cos λ k T+ λ k φ 0 (l)sin λ k T, Y 1k (i) = λ k φ i (l) ψ 0 (l)sin λ k t i λ k φ 0 (l)cos λ k t i , Y 2k (j) = ψ j (l) ψ 0 (l)cos λ k t j + λ k φ 0 (l)sin λ k t j . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWGzbWaaSbaaS qaaiaaigdacaWGRbaabeaaaOqaaiaai2dacqaH7oaBdaWgaaWcbaGa am4AaaqabaGccqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaam iBaiaaiMcacqGHsislcqaHipqEdaWgaaWcbaGaaGimaaqabaGccaaI OaGaamiBaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcba Gaam4AaaqabaGccaWGubGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaadUga aeqaaOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadYgaca aIPaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaamivaiaaiYcaaeaacaaMf8UaamywamaaBaaaleaacaaIYaGaam 4AaaqabaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGa aGikaiaadYgacaaIPaGaeyOeI0IaeqiYdK3aaSbaaSqaaiaaicdaae qaaOGaaGikaiaadYgacaaIPaGaci4yaiaac+gacaGGZbGaeq4UdW2a aSbaaSqaaiaadUgaaeqaaOGaamivaiabgUcaRiabeU7aSnaaBaaale aacaWGRbaabeaakiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIca caWGSbGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaaca WGRbaabeaakiaadsfacaaISaaabaGaamywamaaDaaaleaacaaIXaGa am4AaaqaaiaaiIcacaWGPbGaaGykaaaaaOqaaiaai2dacqaH7oaBda WgaaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcbaGaamyAaaqabaGc caaIOaGaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcbaGaaGimaa qabaGccaaIOaGaamiBaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaWG0bWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0Iaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiaadYgacaaIPaGaci4yaiaac+gaca GGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiDamaaBaaaleaa caWGPbaabeaakiaaiYcaaeaacaaMf8UaamywamaaDaaaleaacaaIYa Gaam4AaaqaaiaaiIcacaWGQbGaaGykaaaaaOqaaiaai2dacqaHipqE daWgaaWcbaGaamOAaaqabaGccaaIOaGaamiBaiaaiMcacqGHsislcq aHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiBaiaaiMcaciGG JbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWG0b WaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadY gacaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaadUga aeqaaOGaamiDamaaBaaaleaacaWGQbaabeaakiaai6caaaaaaa@D980@

Отметим, что выражения для C ˜ 1k (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGymai aadUgaaeqaaOGaaGikaiaadsfacaaIPaaaaa@36B3@ , C ˜ 2k (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGOmai aadUgaaeqaaOGaaGikaiaadsfacaaIPaaaaa@36B4@ , C ˜ 1k ( t i ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGymai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaI Paaaaa@37F7@ , C ˜ 2k ( t j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGOmai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaI Paaaaa@37F9@  совпадают с приведенными в формулах (4.20) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.23), а выражения для X 1k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaaigdacaWGRb aabeaaaaa@3471@ , X 2k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaaikdacaWGRb aabeaaaaa@3472@ , X 1k (i) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaa0baaSqaaiaaigdacaWGRb aabaGaaGikaiaadMgacaaIPaaaaaaa@36C5@ , X 2k (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaa0baaSqaaiaaikdacaWGRb aabaGaaGikaiaadQgacaaIPaaaaaaa@36C7@  приведены в (4.28).

Введем следующие обозначения:

H ¯ k 2a (τ)= sin λ k (Tτ) (1) k+1 sin λ k (Tτ) cos λ k (Tτ) (1) k+1 cos λ k (Tτ) h k (1) (τ) (1) k+1 h k (1) (τ) h k (m) (τ) (1) k+1 h k (m) (τ) , C k 2a ( t 1 ,, t m ,T)= C 1k (T) C 2k (T) C 1k ( t 1 ) C 1k ( t m1 ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaqhaaWcbaGaam4Aaa qaamaabmaabaGaaGOmaiaadggaaiaawIcacaGLPaaaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqafiaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcciGGZbGaaiyA aiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamivai abgkHiTiabes8a0jaaiMcaaeaaciGGJbGaai4BaiaacohacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0j aaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDcaaI PaaabaGaamiAamaaDaaaleaacaWGRbaabaGaaGikaiaaigdacaaIPa aaaOGaaGikaiabes8a0jaaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaamiAamaaDa aaleaacaWGRbaabaGaaGikaiaaigdacaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaacqWIVlctaeaaaeaacaWGObWaa0baaSqaaiaadUgaae aacaaIOaGaamyBaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaa iIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRi aaigdaaaGccaWGObWaa0baaSqaaiaadUgaaeaacaaIOaGaamyBaiaa iMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaacaaISa GaaGzbVlaadoeadaqhaaWcbaGaam4AaaqaamaabmaabaGaaGOmaiaa dggaaiaawIcacaGLPaaaaaGccaaIOaGaamiDamaaBaaaleaacaaIXa aabeaakiaaiYcacqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaa beaakiaaiYcacaWGubGaaGykaiaai2dadaqadaqaauaabeqafeaaaa qaaiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadsfa caaIPaaabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOa GaamivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaigdacaWGRbaabeaa kiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiabl6 UinbqaaiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaa dshadaWgaaWcbaGaamyBaiabgkHiTiaaigdaaeqaaOGaaGykaaaaai aawIcacaGLPaaacaaISaaaaa@CBAD@  (4.46)

H ¯ k 2b (τ)= sin λ k (Tτ) (1) k+1 sin λ k (Tτ) cos λ k (Tτ) (1) k+1 cos λ k (Tτ) g k (1) (τ) (1) k+1 g k (1) (τ) g k (m) (τ) (1) k+1 g k (m) (τ) , C k 2b ( t 1 ,, t m ,T)= C 1k (T) C 2k (T) C 2k ( t 1 ) C 2k ( t m ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaqhaaWcbaGaam4Aaa qaamaabmaabaGaaGOmaiaadkgaaiaawIcacaGLPaaaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqafiaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcciGGZbGaaiyA aiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamivai abgkHiTiabes8a0jaaiMcaaeaaciGGJbGaai4BaiaacohacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0j aaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDcaaI PaaabaGaam4zamaaDaaaleaacaWGRbaabaGaaGikaiaaigdacaaIPa aaaOGaaGikaiabes8a0jaaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaam4zamaaDa aaleaacaWGRbaabaGaaGikaiaaigdacaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaacqWIVlctaeaaaeaacaWGNbWaa0baaSqaaiaadUgaae aacaaIOaGaamyBaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaa iIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRi aaigdaaaGccaWGNbWaa0baaSqaaiaadUgaaeaacaaIOaGaamyBaiaa iMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaacaaISa GaaGzbVlaadoeadaqhaaWcbaGaam4AaaqaamaabmaabaGaaGOmaiaa dkgaaiaawIcacaGLPaaaaaGccaaIOaGaamiDamaaBaaaleaacaaIXa aabeaakiaaiYcacqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaa beaakiaaiYcacaWGubGaaGykaiaai2dadaqadaqaauaabeqafeaaaa qaaiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadsfa caaIPaaabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOa GaamivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaa kiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiabl6 UinbqaaiaadoeadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGaaGikaiaa dshadaWgaaWcbaGaamyBaaqabaGccaaIPaaaaaGaayjkaiaawMcaai aaiYcaaaa@CA05@  (4.47)

H ¯ k 2c (τ)= sin λ k (Tτ) (1) k+1 sin λ k (Tτ) cos λ k (Tτ) (1) k+1 cos λ k (Tτ) h k (1) (τ) (1) k+1 h k (1) (τ) g k (2) (τ) (1) k+1 g k (2) (τ) h k (m1) (τ) (1) k+1 h k (m1) (τ) g k (m) (τ) (1) k+1 g k (m) (τ) , C k 2c ( t 1 ,, t m ,T)= C 1k (T) C 2k (T) C 1k ( t 1 ) C 2k ( t 2 ) C 1k ( t m1 ) C 2k ( t m ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaqhaaWcbaGaam4Aaa qaamaabmaabaGaaGOmaiaadogaaiaawIcacaGLPaaaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqahiaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcciGGZbGaaiyA aiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamivai abgkHiTiabes8a0jaaiMcaaeaaciGGJbGaai4BaiaacohacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0j aaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDcaaI PaaabaGaamiAamaaDaaaleaacaWGRbaabaGaaGikaiaaigdacaaIPa aaaOGaaGikaiabes8a0jaaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaamiAamaaDa aaleaacaWGRbaabaGaaGikaiaaigdacaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaacaWGNbWaa0baaSqaaiaadUgaaeaacaaIOaGaaGOmai aaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWGNb Waa0baaSqaaiaadUgaaeaacaaIOaGaaGOmaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaaqaaiabl+UimbqaaaqaaiaadIgadaqhaaWcbaGaam 4AaaqaaiaaiIcacaWGTbGaeyOeI0IaaGymaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaale qabaGaam4AaiabgUcaRiaaigdaaaGccaWGObWaa0baaSqaaiaadUga aeaacaaIOaGaamyBaiabgkHiTiaaigdacaaIPaaaaOGaaGikaiabes 8a0jaaiMcaaeaacaWGNbWaa0baaSqaaiaadUgaaeaacaaIOaGaamyB aiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaaiIcacqGHsislca aIXaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWG NbWaa0baaSqaaiaadUgaaeaacaaIOaGaamyBaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaaaaaiaawIcacaGLPaaacaaISaGaaGzbVlaadoea daqhaaWcbaGaam4AaaqaamaabmaabaGaaGOmaiaadogaaiaawIcaca GLPaaaaaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYca cqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaabeaakiaaiYcaca WGubGaaGykaiaai2dadaqadaqaauaabeqaheaaaaqaaiaadoeadaWg aaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadsfacaaIPaaabaGaam 4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamivaiaaiMca aeaacaWGdbWaaSbaaSqaaiaaigdacaWGRbaabeaakiaaiIcacaWG0b WaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaadoeadaWgaaWcbaGa aGOmaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGOmaaqaba GccaaIPaaabaGaeSO7I0eabaGaam4qamaaBaaaleaacaaIXaGaam4A aaqabaGccaaIOaGaamiDamaaBaaaleaacaWGTbGaeyOeI0IaaGymaa qabaGccaaIPaaabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOa GaayzkaaGaaGilaaaa@04BB@  (4.48)

U (δ) (τ)= μ (δ) (τ) ν (δ) (τ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaWbaaSqabeaacaaIOaGaeq iTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaaGypamaabmaabaqb aeqabiqaaaqaaiabeY7aTnaaCaaaleqabaGaaGikaiabes7aKjaaiM caaaGccaaIOaGaeqiXdqNaaGykaaqaaiabe27aUnaaCaaaleqabaGa aGikaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawI cacaGLPaaacaaIUaaaaa@4C5B@

Тогда с учетом введенных обозначений (4.46) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.48) соотношения (4.41) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.44) запишутся следующим образом:

0 T H ¯ k (2δ) (τ) U (δ) (τ)dτ= C k (2δ) ( t 1 ,, t m ,T),δ=a,b,c;k=1,2,. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcceWGibGbaebadaqhaaWcbaGaam4AaaqaaiaaiIca caaIYaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaamyvam aaCaaaleqabaGaaGikaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNa aGykaiaadsgacqaHepaDcaaI9aGaam4qamaaDaaaleaacaWGRbaaba GaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiaadshadaWgaaWc baGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaadshadaWgaaWcba GaamyBaaqabaGccaaISaGaaGjcVlaadsfacaaIPaGaaGilaiaaywW7 cqaH0oazcaaI9aGaamyyaiaaiYcacaWGIbGaaGilaiaadogacaaI7a GaaGzbVlaadUgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAci ljaai6caaaa@6BE5@  (4.49)

Здесь через U (δ) (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaWbaaSqabeaacaaIOaGaeq iTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaaaa@3902@ , δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ , обозначены вектор-функции управления и оптимального управления для задач смещением двух концов, т.е. для задач 2A, 2B, 2C и 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  A, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  B, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  C соответственно.

Таким образом, для поиска функции U (δ) (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaWbaaSqabeaacaaIOaGaeq iTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaaaa@3902@ , τ[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIBbGaaGimai aaiYcacaWGubGaaGyxaaaa@391B@ , для всех перечисленных задач получили бесконечные интегральные соотношения, которые представлены в единой записи (4.49). Введем для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник следующие обозначения блочных матриц:

H n (2δ) (τ)= H ¯ 1 (2δ) (τ) H ¯ 2 (2δ) (τ) H ¯ n (2δ) (τ) , η n (2δ) = C 1 (2δ) ( t 1 ,, t m ,T) C 2 (2δ) ( t 1 ,, t m ,T) C n (2δ) ( t 1 ,, t m ,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiaa i2dadaqadaqaauaabeqaeeaaaaqaaiqadIeagaqeamaaDaaaleaaca aIXaaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaaceWGibGbaebadaqhaaWcbaGaaGOmaaqaaiaaiIcaca aIYaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaabaGaeSO7 I0eabaGabmisayaaraWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOmai abes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGL PaaacaaISaGaaGzbVlabeE7aOnaaDaaaleaacaWGUbaabaGaaGikai aaikdacqaH0oazcaaIPaaaaOGaaGypamaabmaabaqbaeqabqqaaaaa baGaam4qamaaDaaaleaacaaIXaaabaGaaGikaiaaikdacqaH0oazca aIPaaaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaISaGa eSOjGSKaaGilaiaadshadaWgaaWcbaGaamyBaaqabaGccaaISaGaam ivaiaaiMcaaeaacaWGdbWaa0baaSqaaiaaikdaaeaacaaIOaGaaGOm aiabes7aKjaaiMcaaaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiYcacqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaabeaa kiaaiYcacaWGubGaaGykaaqaaiabl6UinbqaaiaadoeadaqhaaWcba GaamOBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG 0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG0b WaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadsfacaaIPaaaaaGaayjk aiaawMcaaaaa@9410@  (4.50)

размерностей n m+2 ×2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaaGOmaaGaayjk aiaawMcaaaaa@3B25@  и n m+2 ×1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaaGymaaGaayjk aiaawMcaaaaa@3B24@  соответственно. Для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник с учетом (4.50) соотношение (4.49) запишется в виде

0 T H n (2δ) (τ) U n (δ) (τ)dτ= η n (2δ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOm aiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiaayIW7caWGvb Waa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIca cqaHepaDcaaIPaGaamizaiabes8a0jaai2dacqaH3oaAdaqhaaWcba GaamOBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaai6caaaa@533D@  (4.51)

Из (4.51) следует утверждение, аналогичное теореме 1: первые n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник системы (4.2), (4.4) с условиями (4.10) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.14) вполне управляемы тогда и только тогда, когда для любого вектора η n (2δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaqhaaWcbaGaamOBaaqaai aaiIcacaaIYaGaeqiTdqMaaGykaaaaaaa@384F@  из (4.50) можно найти управление U n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3929@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , удовлетворяющее условию (4.51).

Для произвольного числа первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник управляющее воздействие U n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3929@ , удовлетворяющее интегральному соотношению (4.51), имеет вид (см. [6, 20])

U n (δ) (t)= H n (2δ) (t) T S n (2δ) 1 η n (2δ) + f n (2δ) (t),δ=a,b,c, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaiaai2dadaqa daqaaiaadIeadaqhaaWcbaGaamOBaaqaaiaaiIcacaaIYaGaeqiTdq MaaGykaaaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaamaaCaaa leqabaGaamivaaaakmaabmaabaGaam4uamaaDaaaleaacaWGUbaaba GaaGikaiaaikdacqaH0oazcaaIPaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacqGHsislcaaIXaaaaOGaeq4TdG2aa0baaSqaaiaad6gaae aacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccqGHRaWkcaWGMbWaa0ba aSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOa GaamiDaiaaiMcacaaISaGaaGzbVlabes7aKjaai2dacaWGHbGaaGil aiaadkgacaaISaGaam4yaiaaiYcaaaa@6712@  (4.52)

где H n (2δ) (t) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaadIeadaqhaaWcbaGaam OBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGa aGykaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaaaaa@3C67@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  транспонированная матрица, f n (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@39F6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  такая вектор-функция, что

0 T H n (2δ) (t) f n (2δ) (t)dt=0, S n (2δ) = 0 T H n (2δ) (t) H n (2δ) (t) T dt,δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOm aiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcacaWGMbWaa0baaS qaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGa amiDaiaaiMcacaWGKbGaamiDaiaai2dacaaIWaGaaGilaiaaywW7ca WGtbWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMca aaGccaaI9aWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aO GaamisamaaDaaaleaacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaI PaaaaOGaaGikaiaadshacaaIPaWaaeWaaeaacaWGibWaa0baaSqaai aad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiD aiaaiMcaaiaawIcacaGLPaaadaahaaWcbeqaaiaadsfaaaGccaWGKb GaamiDaiaaiYcacaaMf8UaeqiTdqMaaGypaiaadggacaaISaGaamOy aiaaiYcacaWGJbGaaGOlaaaa@748F@  (4.53)

Здесь H n (2δ) (t) H n (2δ) (t) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcadaqa daqaaiaadIeadaqhaaWcbaGaamOBaaqaaiaaiIcacaaIYaGaeqiTdq MaaGykaaaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaamaaCaaa leqabaGaamivaaaaaaa@4482@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  внешнее произведение, S n (2δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaaaaa@377B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  известная матрица размерности n m+2 ×n m+2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaamOBamaabmaa baGaamyBaiabgUcaRiaaikdaaiaawIcacaGLPaaaaiaawIcacaGLPa aaaaa@3F75@ , для которой предполагается, что det S n (2δ) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGKbGaaiyzaiaacshacaWGtbWaa0 baaSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccqGH GjsUcaaIWaaaaa@3CD1@ , при δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ .

Здесь также из формулы (4.52) следует, что для задач 2A, 2B, 2C существует множество управляющих функций, решающих задачи граничных управлений.

Подставляя из (4.52) величины μ n (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa @3AC1@  и ν n (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaqhaaWcbaGaamOBaaqaai aaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa @3AC3@  в (4.4), а найденное для F k (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiaadUgaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@39D3@  выражение MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  в (4.15), получим функцию V k (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@39E3@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ . Далее, из формулы (4.1) будем иметь

V n (2δ) (ξ,t)= k=1 n V k (2δ) (t)sin πk l ξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqOVdGNaaGilaiaa dshacaaIPaGaaGypamaaqahabeWcbaGaam4Aaiaai2dacaaIXaaaba GaamOBaaqdcqGHris5aOGaamOvamaaDaaaleaacaWGRbaabaGaaGik aiaaikdacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaci4Cai aacMgacaGGUbWaaSaaaeaacqaHapaCcaWGRbaabaGaamiBaaaacqaH +oaEcaaISaaaaa@53FD@

где

V k (2δ) (t)= V k (0)cos λ k t+ 1 λ k V ˙ k (0)sin λ k t+ 1 λ k 0 t F k (2δ) (τ)sin λ k (tτ)dτ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcacaaI 9aGaamOvamaaBaaaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykai GacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaa dshacqGHRaWkdaWcaaqaaiaaigdaaeaacqaH7oaBdaWgaaWcbaGaam 4AaaqabaaaaOGabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGik aiaaicdacaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaai aadUgaaeqaaOGaamiDaiabgUcaRmaalaaabaGaaGymaaqaaiabeU7a SnaaBaaaleaacaWGRbaabeaaaaGcdaWdXbqabSqaaiaaicdaaeaaca WG0baaniabgUIiYdGccaWGgbWaa0baaSqaaiaadUgaaeaacaaIOaGa aGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG 0bGaeyOeI0IaeqiXdqNaaGykaiaadsgacqaHepaDcaaISaaaaa@7481@  (4.54)

а функция колебания Q n (2δ) (ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqOVdGNaaGilaiaa dshacaaIPaaaaa@3C5A@ , lξl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbGaeyizImQaeqOVdG NaeyizImQaamiBaaaa@39B9@  для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник запишется в виде

Q n (2δ) (ξ,t) = V n (2δ) (ξ,t)+ W n (2δ) (ξ,t), W n (2δ) (ξ,t) = ν n (2δ) (t) μ n (2δ) (t) ξ l + μ n (2δ) (t), δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeqadaaabaGaamyuamaaDaaale aacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiab e67a4jaaiYcacaWG0bGaaGykaaqaaiaai2dacaWGwbWaa0baaSqaai aad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqOV dGNaaGilaiaadshacaaIPaGaey4kaSIaam4vamaaDaaaleaacaWGUb aabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiabe67a4jaa iYcacaWG0bGaaGykaiaaiYcacaaMf8Uaam4vamaaDaaaleaacaWGUb aabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiabe67a4jaa iYcacaWG0bGaaGykaaqaaiaai2dadaWadaqaaiabe27aUnaaDaaale aacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiaa dshacaaIPaGaeyOeI0IaeqiVd02aa0baaSqaaiaad6gaaeaacaaIOa GaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaiaawUfa caGLDbaadaWcaaqaaiabe67a4bqaaiaadYgaaaGaey4kaSIaeqiVd0 2aa0baaSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGc caaIOaGaamiDaiaaiMcacaaISaaaaiaaywW7caaMf8UaeqiTdqMaaG ypaiaadggacaaISaGaamOyaiaaiYcacaWGJbGaaGOlaaaa@8DAE@  (4.55)

Учитывая обозначения (3.1), представим функцию колебания Q n (2δ) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaaaa@3B94@  при l 1 xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaadYgaaaa@39E4@  в следующем виде:

Q n (2δ) (x,t)= k=1 n V k (2δ) (t)sin πk l 1 x+ 1 2 1 x l 1 μ n (2δ) (t)+ 1+ x l 1 ν n (2δ) (t) , 8cm l 1 x0,0tT, k=1 n V k (2δ) (t)sin πk l x+ 1 2 1 x l μ n (2δ) (t)+ 1+ x l ν n (2δ) (t) , 8cm0xl,0tT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai2dadaGabaqaauaabaqaeiaaaaqaaaqaamaaqahabe WcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOv amaaDaaaleaacaWGRbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaO GaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaH apaCcaWGRbaabaGaamiBamaaBaaaleaacaaIXaaabeaaaaGccaWG4b Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaamaabmaa baGaaGymaiabgkHiTmaalaaabaGaamiEaaqaaiaadYgadaWgaaWcba GaaGymaaqabaaaaaGccaGLOaGaayzkaaGaeqiVd02aa0baaSqaaiaa d6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadIha aeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaaaaaOGaayjkaiaawMcaai abe27aUnaaDaaaleaacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaI PaaaaOGaaGikaiaadshacaaIPaaacaGLBbGaayzxaaGaaGilaaqaaa qaaiaaywW7caaI4aGaam4yaiaad2gacqGHsislcaWGSbWaaSbaaSqa aiaaigdaaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdacaaISaGaaG zbVlaaicdacqGHKjYOcaWG0bGaeyizImQaamivaiaaiYcaaeaaaeaa daaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIu oakiaadAfadaqhaaWcbaGaam4AaaqaaiaaiIcacaaIYaGaeqiTdqMa aGykaaaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBamaala aabaGaeqiWdaNaam4AaaqaaiaadYgaaaGaamiEaiabgUcaRmaalaaa baGaaGymaaqaaiaaikdaaaWaamWaaeaadaqadaqaaiaaigdacqGHsi sldaWcaaqaaiaadIhaaeaacaWGSbaaaaGaayjkaiaawMcaaiabeY7a TnaaDaaaleaacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaO GaaGikaiaadshacaaIPaGaey4kaSYaaeWaaeaacaaIXaGaey4kaSYa aSaaaeaacaWG4baabaGaamiBaaaaaiaawIcacaGLPaaacqaH9oGBda qhaaWcbaGaamOBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaa iIcacaWG0bGaaGykaaGaay5waiaaw2faaiaaiYcaaeaaaeaacaaMf8 UaaGioaiaadogacaWGTbGaeyOeI0IaeyOeI0IaaGimaiabgsMiJkaa dIhacqGHKjYOcaWGSbGaaGilaiaaywW7caaIWaGaeyizImQaamiDai abgsMiJkaadsfacaaIUaaaaaGaay5Eaaaaaa@D9C5@  (4.56)

4.3. О дальнейшем построении решения задач оптимального граничного управления колебаниями. В ходе построения решения задач оптимального граничного управления колебаниями, для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник в случае управления смещением левого конца при закрепленном правом конце получено интегральные соотношения в виде (4.35), а в случае управления смещением двух концов MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  интегральные соотношения (4.51). Ясно, что левая часть соотношения (4.35) или (4.51) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  линейная операция, порожденная функцией управления на промежутке времени [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@ , а функционалы (2.11) или (2.12) являются нормой соответствующего нормированного пространства L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaa aa@3376@ .

Таким образом, задачу оптимального управления с интегральными условиями (4.35) при функционале (2.11) или с интегральными условиями (4.51) при функционале (2.12) можно рассматривать как проблему моментов, а решение этих задач следует строить с помощью алгоритма решения проблемы моментов (см. [10]).

5. Заключение. Используя методы разделения переменных, теории управления и оптимального управления конечномерными системами с многоточечными промежуточными условиями, предложен конструктивный подход построения граничного управления и оптимального управления неоднородной колебательной системой с заданными значениями функции колебания и производной функции колебания в разные промежуточные моменты времени. Предложенный для одномерного неоднородного волнового уравнения подход можно распространить на другие одномерные и неодномерные колебательные системы.

×

About the authors

Vanya R. Barseghyan

Institute of Mechanics of the National Academy of Sciences of the Republic of Armenia; Yerevan State University

Author for correspondence.
Email: barseghyan@sci.am
Armenia, Yerevan; Yerevan

References

  1. Барсегян В. Р. Оптимальное граничное управление смещением на двух концах при колебании стержня, состоящего из двух участков разной плотности и упругости// Диффер. уравн. процессы управл. —2022. —№ 2. —С . 41–54.
  2. Барсегян В. Р. Оптимальное граничное управление распределенной неоднородной колебательной системой с заданными состояниями в промежуточные моменты времени//Ж. вычисл. мат. мат. физ. —2023. — 63, № 1. —С . 74–84.
  3. Бутковский А. Г. методы управления системами с распределенными параметрами. —М .: Наука, 1975.
  4. Егоров А. И., Знаменская Л. Н. Об управляемости упругих колебаний последовательно соединенных объектов с распределенными параметрами// Тр. Ин-та мат. мех. УрО РАН. —2011. — 17, № 1. —С. 85–92.
  5. Зверева М. Б., Найдюк Ф. О., Залукаева Ж. О. Моделирование колебаний сингулярной струны//Вестн. Воронеж. гос. ун-та. Сер. Физ. Мат. —2014. —№ 2. —С . 111–119.
  6. Зубов В. И. Лекции по теории управления. —М.: Наука, 1975.
  7. Ильин В. А. Оптимизация граничного управления колебаниями стержня, состоящего из двух разнородных участков// Докл. РАН. —2011. — 440, № 2. —С . 159–163.
  8. Ильин В. А. О приведении в произвольно заданное состояние колебаний первоначально покоящегося стержня, состоящего из двух разнородных участков// Докл. РАН. —2010. — 435, № 6. —С . 732–735.
  9. Корзюк В. И., Козловская И. С. Двухточечная граничная задача для уравнения колебания струны с заданной скоростью в некоторый момент времени. II// Тр. Ин-та мат. НАН Беларуси. —2011. — 19, № 1. —С . 62–70.
  10. Красовский Н. Н. Теория управления движением. —М .: Наука, 1968.
  11. Кулешов А. А. Смешанные задачи для уравнения продольных колебаний неоднородного стержня и уравнения поперечных колебаний неоднородной струны, состоящих из двух участков разной плотности и упругости// Докл. РАН. —2012. — 442, № 5. —С . 594–597.
  12. Львова Н. Н. Оптимальное управление некоторой распределенной неоднородной колебательной системой// Автомат. телемех. —1973. — № 10. —С . 22–32.
  13. Провоторов В. В. Построение граничных управлений в задаче о гашении колебаний системы струн//Вестн. Санкт-Петерб. ун-та. Прикл. мат. Информ. Процессы управл. —2012. — 1. —С . 62–71.
  14. Рогожников А. М. Исследование смешанной задачи, описывающей процесс колебаний стержня, состоящего из нескольких участков с произвольными длинами// Докл. РАН. —2012. — 444. —С . 488–491.
  15. Amara J. Ben, Beldi E. Boundary controllability of two vibrating strings connected by a point mass with variable coefficients// SIAM J. Control Optim. — 2019. — 57, № 5. — P. 3360–3387.
  16. Amara J. Ben, Bouzidi H. Null boundary controllability of a one-dimensional heat equation with an internal point mass and variable coefficients// J. Math. Phys. — 2018. — 59, № 1. — P. 1–22.
  17. Barseghyan V. R. Control problem of string vibrations with inseparable multipoint conditions at intermediate points in time// Mech. Solids. — 2019. — 54, № 8. — P. 1216–1226.
  18. Barseghyan V. R. The problem of boundary control of displacement at two ends by the process of oscillation of a rod consisting of two sections of different density and elasticity// Mech. Solids. — 2023. — 58, № 2.— P. 483–491.
  19. Barseghyan V. R. On the controllability and observability of linear dynamic systems with variable structure//Proc. Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy’s Conference) (Moscow, June 1-3, 2016), 2016. — P. 1–3.
  20. Barseghyan V. R., Barseghyan T. V. On an approach to the problems of control of dynamic system with nonseparated multipoint intermediate conditions// Automat. Remote Control. — 2015. — 76, № 4. —P. 549–559.
  21. Barseghyan V., Solodusha S. On the optimal control problem for vibrations of the rod/string consisting of two non-homogeneous sections with the condition at an intermediate iime// Mathematics. — 2022. — 10, № 23. — P. 4444.
  22. Barseghyan V., Solodusha S. Control of string vibrations by displacement of one end with the other end fixed, given the deflection form at an intermediate moment of time// Axioms. — 2022.— 11, №4. — P. 157.
  23. Barseghyan V., Solodusha S. Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time// Lect. Notes Comp. Sci. — 2021. — 12755. — P. 299–313.
  24. Barseghyan V., Solodusha S. On one problem in optimal boundary control for string vibrations with a given velocity of points at an intermediate moment of time// Proc. International Russian Automation Conference (RusAutoCon) (Sochi, September 5-11, 2021). — Sochi, 2021. — P. 343–349.
  25. Barseghyan V. R., Solodusha S. V. On one boundary control problem of string vibrations with given velocity of points at an intermediate moment of time// J. Phys. Conf. Ser. — 2021.
  26. Mercier D., Regnier V. Boundary controllability of a chain of serially connected Euler–Bernoulli beams with interior masses// Collect. Math. — 2009. — 60, № 3. — P. 307–334.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Barseghyan V.R.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».