Обобщенные уравнения Навье—Стокса, ассоциированные с комплексом Дольбо
- Авторы: Шлапунов А.А.1, Полковников А.Н.1
-
Учреждения:
- Сибирский федеральный университет
- Выпуск: Том 241 (2025)
- Страницы: 90-100
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2782-4438/article/view/312566
- DOI: https://doi.org/10.36535/2782-4438-2025-241-90-100
- ID: 312566
Цитировать
Полный текст
Аннотация
Об авторах
Александр Анатольевич Шлапунов
Сибирский федеральный университетдоктор физико-математических наук, профессор
Александр Николаевич Полковников
Сибирский федеральный университет
Список литературы
- Ладыженская О. А., Математические вопросы динамики вязкой несжимаемой жидкости, Наука, М., 1961
- Ладыженская О. А., “Шестая проблема тысячелетия: уравнения Навье-Стокса, существование и гладкость”, Успехи математических наук, 58:2(350) (2003), 45–78
- Barker T., “Higher integrability and the number of singular points for the Navier-Stokes equations with a scale-invariant bound”, Proc. Amer. Math. Soc. Ser. B, 11 (2024), 436-451
- Barker T., Prange C., “From Concentration to Quantitative Regularity: A Short Survey of Recent Developments for the Navier–Stokes Equations”, Vietnam Journal of Mathematics, 52 (2024), 707–734
- Barker T., Seregin G., “A necessary condition of potential blowup for the Navier–Stokes system in half-space”, Mathematische Annalen, 369:3-4 (2017), 1327–1352
- Barker T., Seregin G., “On stability of weak Navier–Stokes solutions with large initial data”, Communications in Partial Differential Equations, 43:4 (2018), 628–651
- Choe H. J., Wolf J., Yang M., “A new local regularity criterion for suitable weak solutions of the Navier–Stokes equations in terms of the velocity gradient.”, Mathematische Annalen, 370:3-4 (2018), 629–-647
- Escauriaza L., Seregin G. A., “-solutions of the Navier-Stokes equations and backward uniqueness”, Russian Mathematical Surveys, 58:2 (2003), 211–250
- Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. of the AMS, 7:1 (1982), 65–222
- Lions J. L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin et al, 1972
- Mera A., Tarkhanov N., Shlapunov A. A., “Navier-Stokes Equations for Elliptic Complexes”, Journal of Siberian Federal University, Math. and Phys., 12:9 (2019), 3–27
- Mitrinovic‘ D. S., Pearic J. E, Fink A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), V. 53, Kluwer Academic Publishers, Dordrecht, 1991
- Plechac P., Sverak V., “Singular and regular solutions of a nonlinear parabolic system”, Nonlinearity, 16:6 (2003), 2083–2097
- Polkovnikov A. N., “An open mapping theorem for nonlinear operator equations associated with elliptic complexes”, Applicable Analysis., 102 (2023), 2211-2233
- Prodi G., “Un teorema di unicita per le equazioni di Navier-Stokes”, Annali di Matematica Pura ed Applicata, 48 (1959), 173–182
- Serrin J., “On the interior regularity of weak solutions of the Navie-Stokes equations”, Archive for Rational Mechanics and Analysis, 9 (1962), 187–195
- Shlapunov A. A., Tarkhanov N., “An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ”, Siberian Electronic Math. Reports, 18:2 (2021), 1433–1466
- Shlapunov A. A., Tarkhanov N., “Inverse image of precompact sets and regular solutions to the Navier-Stokes equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 278–297
- Smale S., “An infinite dimensional version of Sard’s theorem”, Amer. J. Math., 87:4 (1965), 861–866
- Tao T., “Finite time blow-up for an averaged three-dimensional Navier-Stokes equation”, J. of the AMS, 29 (2016), 601–674
- Tarkhanov N., Complexes of differential operators, Kluwer Academic Publishers, Dordrecht, NL, 1995
- Temam R., Navier-Stokes Equations. Theory and Numerical Analysis, North Holland Publ. Comp., Amsterdam, 1979
Дополнительные файлы
