人工智能在椎体压缩性骨折诊断中计算机断层扫描数据的应用经验:从测试到验证
- 作者: Artyukova Z.R.1, Petraikin A.V.1, Kudryavtsev N.D.1, Petryaykin F.A.2, Semenov D.S.1, Sharova D.E.1, Belaya Z.E.3, Vladzimirskyy A.V.1,4, Vasilev Y.A.1
-
隶属关系:
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
- Lomonosov Moscow State University
- Endocrinology Research Centre
- The First Sechenov Moscow State Medical University
- 期: 卷 5, 编号 3 (2024)
- 页面: 505-518
- 栏目: 原创性科研成果
- URL: https://journal-vniispk.ru/DD/article/view/310034
- DOI: https://doi.org/10.17816/DD624250
- ID: 310034
如何引用文章
全文:
详细
论证。骨质疏松症通常在出现并发症阶段(低能量骨折)时才被诊断出来。 椎体压缩性骨折是骨质疏松症的一种并发症,同时也是随后不同部位骨折的预测因素,但通常没有症状。在针对其他适应症而进行的计算机断层扫描,借助椎体形态测量可以检测出压缩性骨折。 我们分析了使用人工智能服务诊断椎体压缩性骨折的方法。
目的 — 测试根据胸部计算机断层扫描数据对椎体进行形态测量分析的人工智能服务,并评估其在莫斯科市卫生局医疗机构实践中推广的可能性。
材料和方法。为了设定人工智能服务的临床任务,形成了“椎体压缩性骨折(骨质疏松)”为方向的基本诊断要求。服务通过了以下阶段:自测、功能测试、校准测试、验证和试运行。在前三个阶段,测试是在先前准备好的数据集上进行的。 在验证和试运行阶段,使用人工智能服务对医疗机构的计算机断层扫描的检测数据进行了分析。在各个阶段医生专家小组开展工作,评估服务的诊断准确性和功能实用性。将获得的人工智能服务准确性的定量指标与目标值进行比较。
结果。2021年6月至2022年6月期间测试了两种人工智能服务(№1和№2),它们使用不同的方法来确定是否存在压缩性骨折。 两项服务都成功通过了自测阶段(6次试验),以及功能测试(5次试验)和校准测试(100次试验)。№1服务的ROC曲线下面积为0.99(括号内为 95%置信区间值;0.98-1),№2服务的ROC曲线下面积为 0.91(0.85-0.96)。№1服务通过了验证阶段,没有重大意见,而№2服务则被送去修改。试运行阶段结束后,准确度指标如下:№1服务的ROC曲线下面积为 0.93(0.89-0.96),№2服务的ROC曲线下面积为 0.92(0.90-0.94)。在所有阶段,选定的人工智能服务都显示出足以进行临床验证的指标。
结论。对自动诊断椎体压缩性骨折的人工智能服务进行了测试。人工智能服务表现出很高的工作质量。 基于人工智能的服务可以作为医疗决策支持系统的辅助工具。
作者简介
Zlata R. Artyukova
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
编辑信件的主要联系方式.
Email: zl.artyukova@gmail.com
ORCID iD: 0000-0003-2960-9787
SPIN 代码: 7550-2441
俄罗斯联邦, Moscow
Alexey V. Petraikin
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: alexeypetraikin@gmail.com
ORCID iD: 0000-0003-1694-4682
SPIN 代码: 6193-1656
MD, Dr. Sci. (Medicine), Assistant Professor
俄罗斯联邦, MoscowNikita D. Kudryavtsev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: KudryavtsevND@zdrav.mos.ru
ORCID iD: 0000-0003-4203-0630
SPIN 代码: 1125-8637
俄罗斯联邦, Moscow
Fedor A. Petryaykin
Lomonosov Moscow State University
Email: feda.petraykin@gmail.com
ORCID iD: 0000-0001-6923-3839
SPIN 代码: 7803-1005
俄罗斯联邦, Moscow
Dmitry S. Semenov
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: semenovds4@zdrav.mos.ru
ORCID iD: 0000-0002-4293-2514
SPIN 代码: 2278-7290
Cand. Sci. (Engineering)
俄罗斯联邦, MoscowDaria E. Sharova
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: SharovaDE@zdrav.mos.ru
ORCID iD: 0000-0001-5792-3912
SPIN 代码: 1811-7595
俄罗斯联邦, Moscow
Zhanna E. Belaya
Endocrinology Research Centre
Email: jannabelaya@gmail.com
ORCID iD: 0000-0002-6674-6441
SPIN 代码: 4746-7173
MD, Dr. Sci. (Medicine)
俄罗斯联邦, MoscowAnton V. Vladzimirskyy
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; The First Sechenov Moscow State Medical University
Email: VladzimirskijAV@zdrav.mos.ru
ORCID iD: 0000-0002-2990-7736
SPIN 代码: 3602-7120
MD, Dr. Sci. (Medicine)
俄罗斯联邦, Moscow; MoscowYuriy A. Vasilev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: VasilevYA1@zdrav.mos.ru
ORCID iD: 0000-0002-0208-5218
SPIN 代码: 4458-5608
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Moscow参考
- Belaya ZhE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4–47. doi: 10.14341/osteo12930
- Petraikin A, Artyukova Z, Nisovtsova LA, et al. Analysis of the effectiveness of implementing screening of osteoporosis. Manager Zdravoochranenia. 2021;2:31–39. doi: 10.21045/1811-0185-2021-2-31-39
- Alacreu E, Moratal D, Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporosis International. 2017;28(3):983–990. doi: 10.1007/s00198-016-3804-3
- Ziemlewicz TJ, Binkley N, Pickhardt PJ. Opportunistic Osteoporosis Screening: Addition of Quantitative CT Bone Mineral Density Evaluation to CT Colonography. Journal of the American College of Radiology. 2015;12(10):1036–1041. doi: 10.1016/j.jacr.2015.04.018
- Rebello D, Anjelly D, Grand DJ, et al. Opportunistic screening for bone disease using abdominal CT scans obtained for other reasons in newly diagnosed IBD patients. Osteoporosis international. 2018;29(6):1359–1366. doi: 10.1007/s00198-018-4444-6
- Artyukova ZR, Kudryavtsev ND, Petraikin AV, et al. Using an artificial intelligence algorithm to assess the bone mineral density of the vertebral bodies based on computed tomography data. Medical Visualization. 2023;27(2):125–137. doi: 10.24835/1607-0763-1257
- Jang S, Graffy PM, Ziemlewicz TJ, et al. Opportunistic osteoporosis screening at routine abdominal and Thoracic CT: Normative L1 trabecular attenuation values in more than 20 000 adults. Radiology. 2019;291(2):360–367. doi: 10.1148/radiol.2019181648
- Smets J, Shevroja E, Hügle T, et al. Machine Learning Solutions for Osteoporosis-A Review. J Bone Miner Res. 2021;36(5):833–851. doi: 10.1002/jbmr.4292
- Petraikin AV, Skripnikova IA. Quantitative Computed Tomography, modern data. Review. Medical Visualization. 2021;25(4):134–146. doi: 10.24835/1607-0763-1049
- Lenchik L, Rogers LF, Delmas PD, et al. Diagnosis of Osteoporotic Vertebral Fractures: Importance of Recognition and Description by Radiologists. American Journal of Roentgenology. 2004;183(4):949–958. doi: 10.2214/ajr.183.4.1830949
- Pinto A, Berritto D, Russo A, et al. Traumatic fractures in adults: Missed diagnosis on plain radiographs in the Emergency Department. Acta Biomedica. 2018;89:111–123. doi: 10.23750/abm.v89i1-S.7015
- Carberry GA, Pooler BD, Binkley N, et al. Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology. 2013;268(1):120–126. doi: 10.1148/radiol.13121632
- Vladzimirskii AV, Vasil’ev YuA, Arzamasov KM, et al. Computer Vision in Radiologic Diagnostics: The First Stage of the Moscow Experiment: Monograph. 2nd edition, revised and supplemented. Moscow: Izdatel’skie resheniya; 2023. (In Russ.) EDN: FOYLXK
- Genant HK, Wu CY, Cornelis van K, et al. Vertebral fracture assessment using a semiquantitative technique. Journal of Bone and Mineral Research. 1993;8(9):1137–1148. doi: 10.1002/jbmr.5650080915
- Mosmed.ai [Internet]. State Budgetary Institution of Healthcare of the City of Moscow “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of the City of Moscow” [cited 2024 Mar 14]. (In Russ.)Available from: https://mosmed.ai/
- Clinical guidelines. Osteoporosis. [Internet]. Ministry of Health of the Russian Federation. [cited 2023 Oct 24]. Available from: https://cr.minzdrav.gov.ru/schema/87_4
- The Adult Official Positions of the ISCD [Internet]. The International Society For Clinical Densitometry [cited 2023 Oct 24]. Available from: https://iscd.org/official-positions-2023/
- ACR–SPR–SSR practice parameter for the performance of quantitative computed tomography (QCT) bone mineral density [Internet]. American College of Radiology [cited 2023 Oct 24]. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf
- Certificate of the Russian Federation on state registration of the database № 2023621171/ 11.04.2023. Vasil’ev YuA, Turavilova EV, Vladzimirskii AV, et al. MosMedData: CT scan with signs of osteoporosis of the spine. Available from: https://www.elibrary.ru/download/elibrary_52123357_73775308.PDF [cited 2023 Oct 23]. (In Russ.) EDN: SHLWTC
- Pisov M, Kondratenko V, Zakharov A, et al. Keypoints Localization for Joint Vertebra Detection and Fracture Severity Quantification. In: Martel AL, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science. Vol. 12266. Springer; 2020. P:723–732. doi: 10.1007/978-3-030-59725-2_70
- Bar A, Wolf BL, Orna A, et al. Compression fractures detection on CT. Medical Imaging 2017: Computer-Aided Diagnosis. 2017;10134:1013440. doi: 10.48550/arXiv.1706.01671
- Lesnyak O, Baranova I, Belova K, et al. Osteoporosis in Russian Federation: epidemiology, socio-medical and economical aspects (review). Traumatology and Orthopedics of Russia. 2018;24(1):155–168. doi: 10.21823/2311-2905-2018-24-1-155-168
- Seo JW, Lim SH, Jeong JG, et al. A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci Rep. 2021;11(1):13732. doi: 10.1038/s41598-021-93017-x
- Murata K, Endo K, Aihara T, et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci Rep. 2020;10(1):20031. doi: 10.1038/s41598-020-76866-w
- Dong Q, Luo G, Lane NE, et al. Deep Learning Classification of Spinal Osteoporotic Compression Fractures on Radiographs using an Adaptation of the Genant Semiquantitative Criteria. Acad Radiol. 2022;29(12):1819–1832. doi: 10.1016/j.acra.2022.02.020
- Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Computers in Biology and Medicine. 2018;98:8–15. doi: 1016/j.compbiomed.2018.05.011
- Valentinitsch A, Trebeschi S, Kaesmacher J, et al. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporosis International. 2019;30(6):1275–1285. doi: 10.1007/s00198-019-04910-1
- Yasaka K, Akai H, Kunimatsu A, et al. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network. Eur Radiol. 2020;30(6):3549–3557. doi: 10.1007/s00330-020-06677-0
- Nam KH, Seo I, Kim DH, et al. Machine Learning Model to Predict Osteoporotic Spine with Hounsfield Units on Lumbar Computed Tomography. J Korean Neurosurg Soc. 2019;62(4):442–449. doi: 10.3340/jkns.2018.0178
- Zhang J, Liu F, Xu J, et al. Qingqing. Automated detection and classification of acute vertebral body fractures using a convolutional neural network on computed tomography. Frontiers in Endocrinology. 2023;14(1132725):1–10. doi: 10.3389/fendo.2023.1132725
- Pickhardt PJ, Dustin PB, Travisи L, et al. Opportunistic Screening for Osteoporosis Using Abdominal Computed Tomography Scans Obtained for Other Indications. Annals of internal medicine. 2013;158(8):588. doi: 10.7326/0003-4819-158-8-201304160-00003
- Del Lama RS, Candido RM, Chiari-Correia NS, et al. Computer-Aided Diagnosis of Vertebral Compression Fractures Using Convolutional Neural Networks and Radiomics. J Digit Imaging. 2022;35(3):446–458. doi: 10.1007/s10278-022-00586-y
- Morozov SP, Gavrilov AV, Arkhipov IV, et al. Effect of artificial intelligence technologies on the CT scan interpreting time in COVID-19 patients in inpatient setting. Russian Journal of Preventive Medicine. 2022;25(1):14–20. doi: 10.17116/profmed20222501114
- Vladzymyrskyy AV, Kudryavtsev ND, Kozhikhina DD, et al. Effectiveness of using artificial intelligence technologies for dual descriptions of the results of preventive lung examinations. Russian Journal of Preventive Medicine. 2022;25(7):7–15. doi: 10.17116/profmed2022250717
- Shelepa AA, Petraikin AV, Artyukova ZR, et al. Artificial intelligence for bone mineral density assessment: general population data. Digital Diagnostics. 2022;3(S1):23–24. doi: 10.17816/DD10571
补充文件
