Pesquisa

Edição
Título
Autores
Prospects of machine learning applications in affective disorders
Mosolova E., Alfimov A., Kostyukova E., Mosolov S.
Modern capabilities of artificial intelligence technologies in cardiovascular imaging
Islamgulov A., Bogdanova A., Sufiiarov D., Chernyavskaya A., Bairakaeva E., Maksimova A., Nemychnikov N., Bikieva D., Shakhmaeva A., Burdina L., Bolekhan A., Akimov E., Shurakova Z.
Radiomics in application to diseases of the musculoskeletal system: a review
Pleshkov M., Zamyshevskaya M., Kuchinskii E., Jin X., Zhang J., Zavadovskaya V., Zorkaltsev M., Kim T., Pogonchenkova D., Udodov V., Tolmachev I.
Use of artificial intelligence technologies in laboratory medicine, their effectiveness and application scenarios: a systematic review
Vasilev Y., Nanova O., Vladzymyrskyy A., Goldberg A., Blokhin I., Reshetnikov R.
Machine learning techniques for breast cancer diagnosis
Dyomin K., Germashev I.
Diagnostic accuracy of artificial intelligence for the screening of prostate cancer in biparametric magnetic resonance imaging: a systematic review
Kryuchkova O., Schepkina E., Rubtsova N., Alekseev B., Kuznetsov A., Epifanova S., Zarya E., Talyshinskii A.
Classification of adrenocortical carcinoma, pheochromocytoma, and adrenal adenomas using contrast-enhanced computed tomography with machine learning and texture features: a cross-sectional study
Manaev A., Tarbaeva N., Buryakina S., Kovalevich L., Khairieva A., Urusova L., Pachuashvili N., Mel'nichenko G., Mokrysheva N., Sinitsyn V.
Assessment of ovarian follicular reserve according to ultrasound data based on machine learning methods
Laputin F., Sidorov I., Moshkin A.
Machine-learning technology for predicting intraocular lens power: Diagnostic data generalization
Arzamastsev A., Fabrikantov O., Zenkova N., Belikov S.
Development of a portable spectrophotometer using artificial neural networks for non-invasive determination of glycated hemoglobin in blood by Raman spectroscopy
Poliker E., Zemskikh B., Koshechkin K.
Classification of optical coherence tomography images using deep machine-learning methods
Arzamastsev A., Fabrikantov O., Kulagina E., Zenkova N.
Learning radiologists’ annotation styles with multi-annotator labeling for improved neural network performance
Nikitin E.
Using neural networks for non-invasive determination of glycated hemoglobin levels, illustrated by the application of an innovative portable glucometer in clinical practice
Poliker E., Koshechkin K., Timokhin A., Klyukina E., Belyakova E., Brovko A., Lalayan A., Ermolaeva A.
Development of a prognostic model for diagnosis of prostate cancer based on radiomics of biparametric magnetic resonance imaging apparent diffusion coefficient maps and stacking of machine learning algorithms
Kuznetsov A.
Digital diagnostics: A computer application for lymph node metastases in cervical cancer
Kuznetsov A.
Artificial intelligence in ultrasound of thyroid nodules, prognosis of I-131 uptake
Manaev A., Trukhin A., Zakharova S., Sheremeta M., Troshina E.
The concept of responsible artificial intelligence as the future of artificial intelligence in medicine
Germanov N.
Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021
Gusev A., Vladzymyrskyy A., Sharova D., Arzamasov K., Khramov A.
Digital technologies and artificial intelligence in the diagnosis of cardiovascular complications in pregnancy: a review
Trusov Y., Shamsueva K., Kolkhidova M., Inderbieva A., Baryshnikova E., Khusnutdinova K., Rasponomareva A., Shabazgerieva A., Radzhabov K., Sanakoev S., Kudzieva V., Ponomareva A., Kozyreva N.
Use of artificial intelligence in the diagnosis of arterial calcification
Trusov Y., Chupakhina V., Nurkaeva A., Yakovenko N., Ablenina I., Latypova R., Pitke A., Yazovskih A., Ivanov A., Bogatyreva D., Popova U., Yuzlekbaev A.
Predicting atrial fibrillation in comorbid patients with arterial hypertension and chronic obstructive pulmonary disease using laboratory research methods: a machine learning approach
Kazantseva E., Ivannikov A., Tarzimanova A., Podzolkov V.
MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic
Morozov S., Andreychenko A., Blokhin I., Gelezhe P., Gonchar A., Nikolaev A., Pavlov N., Chernina V., Gombolevskiy V.
Machine-learning and artificial neural network technologies in the classification of postkeratotomic corneal deformity
Tsyrenzhapova E., Rozanova O., Iureva T., Ivanov A., Rozanov I.
Dosiomics in the analysis of medical images and prospects for its use in clinical practice
Solodkiy V., Nudnov N., Ivannikov M., Shakhvalieva E., Sotnikov V., Smyslov A.
1 - 24 de 24 resultados
Dicas:
  • Palavras-chave são sensíveis a maiúsculas
  • Preposições e conjunções ingleses são ignoradas
  • Busca é feita por todos os palavras-chave (agente AND experimentador) por omissão
  • Use OR para pesquisar um termo exato, ex.: educação OR formação
  • Use parênteses para criar frases complexas, ex.: arquivo de ((revistas OR conferências) NOT teses)
  • Para pesquisar uma frase precisa use aspas duplas, ex.: "investigações científicas"
  • Exclua uma palavra utilizando o sinal - (hífen) ou operador NOT; ex.: concurso-de beleza ou concurso NOT de beleza
  • Use * como caractere-coringa, ex.: científic* recuperará as palavras "científico", "científicos", etc.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).