Tendencies and perspectives of central alpha2-adrenomimetic application in medicobiological research

Cover Page

Cite item

Full Text

Abstract

The pharmacodynamic effects of the administration of α2-adrenergic agonists both in a monovariant and in combination with drugs of other pharmacological groups are considered. Based on analysis of safety nonclinical studies the characteristics of main physiological effects of α2-adrenergic receptors as well as physiological effects of α2-agonists on various organs and systems are presented. For the determination of tendencies and directions in research of central α2-AM (dexmedetomidine) the analysis of bibliographical data, accumulated and extracted from Medline database with 5 year time-filter (VOSviewer, 1.6.11 version) has been carried out. For the further research of central α2-adrenomimetics and their application in clinical practice the following perspective directions have been determined: the study of effects and mechanisms of cytoprotectant and antioxidant action, the study of the use of drugs in a monovariant and in combinations for the development of analgesic drugs, anesthesia and development of combined formulations with a delayed release of antagonists designed to mitigate side effects.

About the authors

Nikolay G. Vengerovich

State scientific-research taste Institute of military medicine of Defense Ministry of the Russian;
Saint-Petersburg Chemical-Pharmaceutical Academy, St. Petersburg

Author for correspondence.
Email: nikolai.vengerovich@pharminnotech.com
SPIN-code: 6690-9649
Scopus Author ID: 511722

Doctor of Medical Sciences, Deputy Head of the Scientific Department, Professor, Department of Industrial Ecology

Russian Federation, 4, Lesoparkovaja street, Saint-Petersburg, 195043; 197376, St. Petersburg, Professora Popova st., 14

Igor M. Ivanov

State scientific-research taste Institute of military medicine of Defense Ministry of the Russian

Email: gniiivm_15@mil.ru
SPIN-code: 1518-3306
Scopus Author ID: 890881

Candidate of Medical Sciences, Deputy Head of the Scientific Department

Russian Federation, 4, Lesoparkovaja street, Saint-Petersburg, 195043

Yulia A. Proshina

State scientific-research taste Institute of military medicine of Defense Ministry of the Russian

Email: gniiivm_15@mil.ru

Researcher

Russian Federation, 4, Lesoparkovaja street, Saint-Petersburg, 195043

References

  1. Giovannitti J, Thoms S, Crawford J. Alpha-2 Adrenergic Receptor Agonists: A Review of Current Clinical Applications. Anesth Prog. 2015;62(1):31-38. doi: 10.2344/0003-3006-62.1.31
  2. Lamont LA, Burton SA, Caines D, Troncy ED. Effects of 2 different infusion rates of medetomidine on sedation score, cardiopulmonary parameters, and serum levels of medetomidine in healthy dogs. Can J Vet Res. 2012;76(4):308–316.
  3. Zhang Z, Ferretti V, Güntan İ, et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci. 2015;18(4):553–561. doi: 10.1038/nn.3957
  4. Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913. doi: 10.1007/s40262-017-0507-7
  5. Mannelli L, Micheli L, Crocetti L, et al. α2 Adrenoceptor: a Target for Neuropathic Pain Treatment. Mini reviews in medicinal chemistry. Mini Rev Med Chem. 2017;17(2):95-107. doi: 10.2174/1389557516666160609065535. (2016).
  6. Ostopovici-Halip L, Curpăn R, Mracec M, Bologa CG. Structural determinants of the alpha2 adrenoceptor subtype selectivity. J Mol Graph Model. 2011;29(8):1030-1038. doi: 10.1016/j.jmgm.2011.04.011
  7. Fukuda M, Vazquez AL, Zong X, Kim SG. Effects of the α₂-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. Eur J Neurosci. 2013;37(1):80–95. doi: 10.1111/ejn.12024
  8. Gyires K, Zádori Z, Török T, Mátyus P. α2-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochemistry International. 2009 dec.;55(7):447-453. https://doi.org/10.1016/j.neuint.2009.05.014
  9. Sinclair MD. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Can Vet J. 2003;44(11):885–897.
  10. Funai Y, Pickering AE, Uta D, et al. Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms. Pain. 2014;155(3):617–628. doi: 10.1016/j.pain.2013.12.018
  11. Naaz S, Ozair E. Dexmedetomidine in current anaesthesia practice- a review. J Clin Diagn Res. 2014;8(10):GE01–GE4. doi: 10.7860/JCDR/2014/9624.4946
  12. Sharma S, Jain P. Dexmedetomidine and Anesthesia. Indian Journal of Clinical Practice. 2013;24(3):223-225.
  13. Shah Z, Ding M. A Review on the Current Use of Alpha2 Agonists in Small Ruminants. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2014;20(4):633-639. doi: 10.9775/kvfd.2013.10541
  14. Ozaki M, Takeda J, Tanaka K, et al. Safety and efficacy of dexmedetomidine for long-term sedation in critically ill patients. J Anesth. 2014;28(1):38–50. doi: 10.1007/s00540-013-1678-5
  15. Thomas B, Bantel C, Stone L, Wilcox GL. Alpha(α) 2-Adrenergic Agonists in Pain Treatment. In: Gebhart GF, Schmidt RF (eds) Encyclopedia of Pain. Springer, Berlin, Heidelberg; 2013. p.79-86.
  16. Ferdousi M. Structure-Affinity Relationship Study of Novel Imidazoline Ligands at Imidazoline Binding Sites and α-Adrenoceptors [A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science]. Department of Pharmacology, University of Alberta; 2014.
  17. Bell A. The neurobiology of acute pain. Vet J. 2018;(237):55-62. doi: 10.1016/j.tvjl.2018.05.004
  18. Root-Bernstein R, Turke M, Subhramanyam UKT, Churchill B, Labahn J. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"?. Int J Mol Sci. 2018;19(1):272. doi: 10.3390/ijms19010272
  19. Chabot-Doré AJ, Schuster DJ, Stone LS, Wilcox GL. Analgesic synergy between opioid and α2 -adrenoceptors. Br J Pharmacol. 2015;172(2):388–402. doi: 10.1111/bph.12695
  20. Kaur M, Singh PM. Current role of dexmedetomidine in clinical anesthesia and intensive care. Anesth Essays Res. 2011;5(2):128–133. doi: 10.4103/0259-1162.94750
  21. Bajwa SJ, Bajwa SK, Kaur J, et al. Dexmedetomidine and clonidine in epidural anaesthesia: A comparative evaluation. Indian J Anaesth. 2011;55(2):116–121. doi: 10.4103/0019-5049.79883
  22. Baumgartner C, Bollerhey M, Ebner J, Schuster T, Henke J, Erhardt W. Effects of medetomidine-midazolam-fentanyl IV bolus injections and its reversal by specific antagonists on cardiovascular function in rabbits. Can J Vet Res. 2010;74(4):286–298
  23. Egger CM, Love L, Doherty T. Pain Management in Veterinary Practice. Wiley Blackwell, Chichester, UK, 2013. 464 p.
  24. Murrell JC, Hellebrekers LJ. Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Veterinary Anaesthesia and Analgesia. 2005;32(3):117-127. doi: 10.1111/j.1467-2995.2005.00233.x
  25. Adam M, Raekallio MR, Salla KM, et al. Effects of the peripherally acting α2-adrenoceptor antagonist MK-467 on cardiopulmonary function in sheep sedated by intramuscular administration of medetomidine and ketamine and reversed by intramuscular administration of atipamezole. Am J Vet Res. 2018;79(9):921-932. doi: 10.2460/ajvr.79.9.921
  26. Ingersoll-Weng E, Manecke GJ, Thistlethwaite PA. Dexmedetomidine and cardiac arrest. Anesthesiology. 2004;100(3):738-9. doi: 10.1097/00000542-200403000-00040
  27. Page RL, O'Bryant CL, Cheng D, et al. Drugs That May Cause or Exacerbate Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2016;134(6):e32-69. doi: 10.1161/CIR.0000000000000426
  28. Carter JE, Campbell NB, Posner LP, Swanson C. The hemodynamic effects of medetomidine continuous rate infusions in the dog. Vet Anaesth Analg. 2010;37(3):197-206. doi: 10.1111/j.1467-2995.2009.00522.x
  29. Nelson W, Couto CG. Small Animal Internal Medicine. St. Louis, MO: Elsevier/Mosby; 2015. 1473 p.
  30. Kaartinen MJ, Cuvelliez S, Brouillard L, Rondenay Y, Kona-Boun JJ, Troncy E. Survey of utilization of medetomidine and atipamezole in private veterinary practice in Quebec in 2002. Can Vet J. 2007;48(7):725–730.
  31. Wu J, Lei E, Zhou J, Zhao D. Impacts and mechanisms of dexmedetomidine HCl on heart rate in rabbit with bilateral vagotomy or sympathectomy. Biomedical Research. 2017;28(17):7509-7513.
  32. Yaygingül R, Belge А. The comparison of clinical and cardiopulmonary effects of xylazine, medetomidine and detomidine in dogs. Ankara Üniv. Vet. Fak. Derg. 2018;65:313–322.
  33. Berg T. β- and α2-Adrenoceptor Control of Vascular Tension and Catecholamine Release in Female Normotensive and Spontaneously Hypertensive Rats. Front Neurol. 2017;8:130. doi: 10.3389/fneur.2017.00130
  34. Chittick E, Horne W, Wolfe B, Sladky K. Cardiopulmonary assessment of medetomidine, ketamine, and butorphanol anesthesia in captive Thomson's gazelles (Gazella thomsoni). J Zoo Wildl Med. 2001;32(2):168-75. doi: 10.1638/1042-7260(2001)032[0168:CAOMKA]2.0.CO;2
  35. Raillard M, Michaut-Castrillo J, Spreux D, et al. Comparison of medetomidine-morphine and medetomidine-methadone for sedation, isoflurane requirement and postoperative analgesia in dogs undergoing laparoscopy. Vet Anaesth Analg. 2017;44(1):17-27. doi: 10.1111/vaa.12394.
  36. Muller LI, Osborn DA, Doherty T. Optimal medetomidine dose when combined with ketamine and tiletamine-zolazepam to immobilize white-tailed deer. J Wildl Dis. 2012;48(2):477- 482.
  37. Rauser P, Zatloukal J, Neâas A, et al. Combined Medetomidine and Ketamine for Short-term Anaesthesia in Ferrets - A Clinical Study. Acta Veterinaria Brno. 2012;71(2):243- 248. doi: 10.2754/avb200271020243
  38. Schmitz S, Tacke S, Guth B, Henke J. Repeated anaesthesia with isoflurane and medetomidine-midazolam-fentanyl in guinea pigs and its influence on physiological parameters. PLoS One. 2017;12(3):e0174423. doi: 10.1371/journal.pone.0174423
  39. Le Chevallier D, Slingsby L, Murrell J. Use of midazolam in combination with medetomidine for premedication in healthy dogs. Vet Anaesth Analg. 2019;46(1):74-78. doi: 10.1016/j.vaa.2018.08.001
  40. Shukry M, Miller JA. Update on dexmedetomidine: use in nonintubated patients requiring sedation for surgical procedures. Ther Clin Risk Manag. 2010;6:111–121 p. doi: 10.2147/tcrm.s5374
  41. Scott-Warren VL, Sebastian J. Dexmedetomidine: its use in intensive care medicine and anaesthesia. BJA Education. 2016;16(7), 242-246 p. doi: 10.1093/bjaed/mkv047
  42. Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res. 2017;95(6):1336–1346. doi: 10.1002/jnr.23956
  43. Cassu RN, Melchert A, Canoa JT, Martins PD. Sedative and clinical effects of the pharmacopuncture with xylazine in dogs. Acta Cir Bras. 2014;29(1):47-52. doi: 10.1590/S0102-86502014000100007
  44. Kallio-Kujala IJ, Turunen HA, Raekallio MR, et al. Peripherally acting α-adrenoceptor antagonist MK-467 with intramuscular medetomidine and butorphanol in dogs: A prospective, randomised, clinical trial. Vet J. 2018;240:22-26. doi: 10.1016/j.tvjl.2018.08.007
  45. Kanda T, Iguchi A, Yoshioka C, et al. Effects of medetomidine and xylazine on intraocular pressure and pupil size in healthy Beagle dogs. Vet Anaesth Analg. 2015;42(6):623-8. doi: 10.1111/vaa.12249
  46. Keegan RD, Greene SA, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res. 1995;56(2):193-198.
  47. Cao G, Zhang E. [Protective effects of dexmedetomidine against pulmonary ischemia-reperfusion injury during cardiopulmonary bypass in rats]. [Article in Chinese].Nan Fang Yi Ke Da Xue Xue Bao. 2019;39(8):980-986. doi: 10.12122/j.issn.1673-4254.2019.08.16.
  48. He L, Hao S, Wang Y, et al. Dexmedetomidine preconditioning attenuates ischemia/reperfusion injury in isolated rat hearts with endothelial dysfunction. Biomed Pharmacother. 2019;53(2):74-81. doi: 10.1016/j.biopha.2019.108837.
  49. Cheng X, Hu J, Wang Y, et al. Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway. J Diabetes Res. 2018;2018:3071959. doi: 10.1155/2018/3071959
  50. Sha J, Zhang H, Zhao Y, et al. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3β/MKP-1/Nrf2 pathway activity via the α2 adrenergic receptor. Toxicol Appl Pharmacol. 2019;1;364:144-152. doi: 10.1016/j.taap.2018.12.017.
  51. Chen Y, Luan L, Wang C, et al. Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats. Nitric Oxide. 2019;1;85:1-9. doi: 10.1016/j.niox.2019.01.009.
  52. Sha J, Zhang H, Zhao Y, et al. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3β/MKP-1/Nrf2 pathway activity via the α2 adrenergic receptor. Toxicol Appl Pharmacol. 2019;364:144-152. doi: 10.1016/j.taap.2018.12.017.
  53. Li F, Wang X, Deng Z, et al. Dexmedetomidine reduces oxidative stress and provides neuroprotection in a model of traumatic brain injury via the PGC-1α signaling pathway. Neuropeptides. 2018;72:58-64. doi: 10.1016/j.npep.2018.10.004.
  54. Chen Y, Feng X, Hu X, et al. Dexmedetomidine Ameliorates Acute Stress-Induced Kidney Injury by Attenuating Oxidative Stress and Apoptosis through Inhibition of the ROS/JNK Signaling Pathway. Oxid Med Cell Longev. 2018:4035310. doi: 10.1155/2018/4035310
  55. Kallio-Kujala IJ, Bennett RC, Raekallio MR, et al. Effects of dexmedetomidine and MK-467 on plasma glucose, insulin and glucagon in a glibenclamide-induced canine hypoglycaemia model. Vet J. 2018;242:33-38. doi: 10.1016/j.tvjl.2018.09.012
  56. Beloeil H, Laviolle B, Menard C, et al. POFA trial study protocol: a multicentre, double-blind, randomised, controlled clinical trial comparing opioid-free versus opioid anaesthesia on postoperative opioid-related adverse events after major or intermediate non-cardiac surgery. BMJ Open. 2018;8(6):e020873. doi: 10.1136/bmjopen-2017-020873
  57. Shankar P, Mueller A, Packiasabapathy S, et al. Dexmedetomidine and intravenous acetaminophen for the prevention of postoperative delirium following cardiac surgery (DEXACET trial): protocol for a prospective randomized controlled trial. Trials. 2018;19(1):326. doi: 10.1186/s13063-018-2718-0
  58. Louis C, Godet T, Chanques G, et al. Effects of dexmedetomidine on delirium duration of non-intubated ICU patients (4D trial): study protocol for a randomized trial. Trials. 2018;19(1):307. doi: 10.1186/s13063-018-2656-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Vengerovich N.G., Ivanov I.M., Proshina Y.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».