Correction of hypoxic state by metabolic precursors of endogenous activator of mitochondrial ATP-dependent K+channels
- Authors: Krylova I.B.1, Safonova A.F.1, Evdokimova N.R.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 16, No 3 (2018)
- Pages: 25-31
- Section: Articles
- URL: https://journal-vniispk.ru/RCF/article/view/10380
- DOI: https://doi.org/10.17816/RCF16325-31
- ID: 10380
Cite item
Full Text
Abstract
Aim. The antihypoxic properties of uridine and uridine-5'-monophosphate (UMP), which are the metabolic precursors of the natural activator of mitochondrial ATP-dependent K+ channels (mitoKATP channels) uridine diphosphat were investigated on the models of hypoxic hypoxia with hypercapnia (HHH), hemic hypoxia and local circulatory hypoxia.
Methods. HHH was created in males and females white mice weighing 28-30 g. The animals were placed one by one in hermetically closed container and the duration of their life was determined. The antihypoxic activity of the substances was compared with the reference anthypoxant amtizole (50 mg/kg). Hemic hypoxia was caused in Wistar rats weighing 350-370 g by the injection of sodium nitrite (intramuscularly, 100 mg/kg). Uridine or UMP 30 mg/kg was injected intraperitoneally 30 minutes before the onset of HHH and hemic hypoxia. Local circulatory hypoxia was modeled in male Wistar rats weighing 250-300 g. Acute coronary occlusion lasting 60 min was reproduced by legation of descending branch of the left coronary artery (LCA). Uridine or UMP (30 mg/kg) was administered intravenously 5 minutes prior to LCA occlusion. Selective blocker of mitoKATP channels 5-hydroxydecanoate (5 mg/kg, intravenously, 5 minutes prior uridine or UMP) was used to determine the role of these channels in the mechanism of antihypoxic action of the studied drugs. The volume of the damaged myocardium was used as the marker of antihypoxic activity of uridine and UMP.
Results. Different resistance to hypoxia in female and male mice was observed in HHH. The female mice were more resistant, their life duration was 43% more than the males. Uridine and UMP displayed antihypoxic activity only in male mice, increasing their life duration by 25% and 20% respectively. This effect was 2 times less than that of amtisol. In similar conditions in females mice the preparations did not show a protective effect. In hemic hypoxia the life duration of rats treated with uridine and UMP did not differ from the control values. Circulatory hypoxia, caused by occlusion of the LCA, led to the formation of a local zone of myocardial damage. Uridine or UMP decreased the damage zone in 2 and 3,5 times respectively. The inhibitor of mitoKATP channels blocked the protective effect of these compounds.
Conclusion. Uridine and UMP have a distinct antihypoxic effect in HHH and a marked protective effect in local circulatory hypoxia. The antihypoxic activity of druges in HHH is manifested differently in female and male mice. It may be due to sexual differences in the resistance to hypoxia. The maximum effect is observed in male who have initially low resistance to oxygen deficiency. The mechanism of the protective action of uridine and UMP in the circulatory hypoxia is associated with the activation of mitoKATP channels.
Full Text
##article.viewOnOriginalSite##About the authors
Irina B. Krylova
Institute of Experimental Medicine
Author for correspondence.
Email: irinakrylova@mail.ru
PhD, Senior Reasercher, S.V. Anichkov Department of Neuropharmacology
Russian Federation, St. PetersburgAlbina F. Safonova
Institute of Experimental Medicine
Email: a.safonova@list.ru
Scientific Associate, S.V. Anichkov Department of Neuropharmacology
Russian Federation, St. PetersburgNatalia R. Evdokimova
Institute of Experimental Medicine
Email: enatalyar@mail.ru
PhD, Scientific Associate, S.V. Anichkov Department of Neuropharmacology
Russian Federation, St. PetersburgReferences
- Бульон В.В., Селина Е.Н., Крылова И.Б. Фармакологическая коррекция цитотоксического действия циркуляторной гипоксии в эксперименте // Известия Российской военно-медицинской академии. - 2017. - Т. 36. - № 2 (прил. 1). - С. 133-134. [Bulion VV, Selina EN, Krylova IB. Farmakologicheskaya korrektsiya tsitotoksicheskogo deystviya tsirkulyatornoy gipoksii v eksperimente. Izvestiya Rossiyskoy voyenno-meditsinskoy akademii. 2017;36(2, suppl. 1):133-134. (In Russ.)]
- Бульон В.В., Крылова И.Б., Родионова О.М., и др. Сравнительное изучение кардиопротекторных эффектов уридин-5´-монофосфата и уридин-5´-трифосфата на ранних сроках острой ишемии миокарда // Бюллетень экспериментальной биологии и медицины. - 2007. - Т. 144. - № 9. - С. 297-300. [Bulion VV, Krylova IB, Rodionova OM, et al. Comparative study of cardioprotective effects of uridine-5′-monophosphate and uridine-5′-triphosphate during the early periods of acute myocardial ischemia. Bulletin of Experimental Biology and Medicine. 2007;144(3):322-325].
- Зарубина И.В. Молекулярные механизмы индивидуальной устойчивости к гипоксии // Обзоры по клинической фармакологии и экспериментальной терапии. - 2005. - T. 4. - № 1. - C. 49-51. [Zarubina IV. Molekulyarnyye mekhanizmy individualnoy ustoychivosti k gipoksii. Reviews on clinical pharmacology and drug therapy. 2005;4(1):49-51. (In Russ.)]
- Кашуро В.А., Долго-Сабуров В.Б., Башарин В.А., и др. Некоторые механизмы нарушения биоэнергетики и оптимизация подходов к их фармакотерапии // Биомедицинский журнал. - 2010. - T. 11. - СТ 52 - С. 611-634. [Kashuro VA, Dolgo-Saburov VB, Basharin VA, et al. Some mechanisms of bioenergy disorders and optimization of the approaches to its pharmacotherapy. Biomeditsinskiy zhurnal Medline.ru. 2010;11(Art.52):611-634. (In Russ.)]
- Крылова И.Б., Бульон В.В., Селина Е.Н., и др. Влияние уридина на энергетический обмен, ПОЛ и антиоксидантную систему в миокарде в условиях острой коронарной недостаточности // Бюллетень экспериментальной биологии и медицины. - 2012. - Т. 153. - № 5. - С. 596-599. [Krylova IB, Bulion VV, Selina EN, et al. Effect of uridine on energy metabolism, LPO, and antioxidant system in the myocardium under conditions of acute coronary insufficiency. Bulletin of Experimental Biology and Medicine. 2012;153(5):644-646. (In English)]
- Крылова И.Б., Бульон В.В., Селина Е.Н., и др. Коррекция энергодефицита в кардиомиоцитах в условиях острой ишемии миокарда // Обзоры по клинической фармакологии и лекарственной терапии. - 2017. - Т. 15. - Спецвыпуск 2. - С. 37-38. [Krylova IB, Bulon VV, Selina EN, et al. Korrektsiya energodefitsita v kardiomiotsitakh v usloviyakh ostroy ishemii miokarda. Reviews on clinical pharmacology and drug therapy. 2017;15(Suppl. 2):37-38. (In Russ.)]
- Лукьянова Л.Д. Роль биоэнергетических нарушений в патогенезе гипоксии // Патологическая физиология и экспериментальная терапия. - 2004. - № 2. - С. 2-11. [Lukianova LD. Rol bioenergeticheskikh narusheniy v patogeneze gipoksii. Patologicheskaya fiziologiya i eksperimentalnaya terapiya. 2004;(2):2-11. (In Russ.)]
- Лукьянова Л.Д. Сигнальная роль митохондрий при адаптации к гипоксии // Фiзiол. журн. - 2013. - Т. 59. - № 6. - С. 141-154. [Lukianova LD. Signalnaya rol mitokhondriy pri adaptatsii k gipoksii. Fiziol zhurn. 2013;59(6):141-154. (In Russ.)]
- Малкова Я.Г., Кальченко Г. Использование различных моделей гипоксии в экспериментальной фармакологии // Молодой ученый. - 2010. - № 3. - С. 318-319. [Malkova YaG, Kalchenko G. Ispolzovaniye razlichnykh modeley gipoksii v eksperimentalnoy farmakologii. Molodoy uchenyy. 2010;(3):318-319. (In Russ.)]
- Маньковская И.Н., Носарь В.И., Горбачева О.С., и др. Влияние уридина на выносливость животных с разной устойчивостью к физической нагрузке: роль митохондриального АТФ-зависимого калиевого канала // Биофизика. - 2014. - Т. 59. - № 5. - С. 941-945. [Mankovskaya IN, Nosar VI, Gorbacheva OS, et al. Vliyaniye uridina na vynoslivost zhivotnykh s raznoy ustoychivostyu k fizicheskoy nagruzke: rol mitokhondrialnogo ATF-zavisimogo kaliyevogo kanala. Biofizika. 2014;59(5):941-945. (In Russ.)]
- Миронова Г.Д., Шигаева М.И., Гриценко Е.Н., и др. Особенности работы митохондриального АТФ-зависимого калиевого канала у животных с разной толерантностью к гипоксии до и после курсовой гипоксической тренировки // Бюллетень экспериментальной биологии и медицины. - 2011. - Т. 151. - № 1. - С. 30-36. [Mironova GD, Shigaeva MI, Gritsenko EN, et al. Activity of mitochondrial ATP-dependent potassium channel in animals with different resistance to hypoxia before and after the course of hypoxic training. Bulletin of Experimental Biology and Medicine. 2011;151(1):25-29. (In English)]
- Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / Под ред. Р.У. Хабриева. - М.: Медицина, 2005. [Rukovodstvo po eksperimentalnomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. Ed by R.U. Khabriyeva. Moscow: Meditsina; 2005. (In Russ.)]
- Crestanello J, Doliba N, Babsky A, et al. Opening of potassium channels protects mitochondrial function from calcium overload. J Surg Res. 2000;94(2):116-123. doi: 10.1006/jsre.2000.5979.
- Frederiks W, Schellens J, Marx F, et al. Histochemical detection of glycogen phosphorylase activity as parameter for early ischaemic damage in rat heart. Basic Res Cardiol. 1993;88:130-140.
- Garlid K. Opening mitochondrial KATP in thre heart - what happens and what does not happen. Basic Res Cardiol. 2000;95:275-279. doi: 10.1007/s003950070046.
- Matejíková J, Kucharská J, Pintérová M, et al. Protection against ischemia-induced ventricular arrhythmias and myocardial dysfunction conferred by preconditioning in the rat heart: involvement of mitochondrial K(ATP) channels and reactive oxygen species. Physiol Res. 2009;58(1):9-19.
- Matsushita S, Fanburg BL. Pyrimidine nucleotide synthesis in the normal and hypertrophying rat heart. Relative importance of the de novo and “salvage” pathways. Circ Res. 1970;27(3):415-428. doi: 10.1161/01.RES.27.3.415.
- Mironova GD, Negoda AE, Marinov BS, et al. Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J Biol Chem. 2004;279(31):32562-8. doi: 10.1074/jbc.M401115200.
- Murata M, Akao M, O’Rourke B, Marbán E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res. 2001;89(10):891-898. doi: 10.1161/hh2201.100205.
- Negoda AE, Kachaeva EV, Mironova GD, Chailakhyan LM. The regulatory mechanism of the mitochondrial ATP-dependent potassium channel by the adenine nucleotides. Dokl Biochem Biophys. 2005;400:4-6. doi: 10.1007/s10628-005-0019-5.
- OʼRourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004, 94:420-432. doi: 10.1161/01.RES.0000117583.66950.43.
- Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000;87(6):460-466. doi: 10.1161/01.RES.87.6.460.
- Xu M, et al. Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol Heart Circ Physiol. 2001;281(3): H1295-303. doi: 10.1152/ajpheart.2001.281.3.H1295.
- Zhu B, Min S, Long C, et al. Ischemic preconditioning in immature hearts: mechanism and compatibility with cardioplegia. Chin Med J (Engl). 2003;116(2):253-7.
