Toxicology of carbon nanostructures. Part 2. Nanoscale materials based on graphene sheets
- Authors: Litasova E.V.1, Iljin V.V.1, Brusina M.A.1, Piotrovskiy L.B.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 21, No 1 (2023)
- Pages: 5-22
- Section: Reviews
- URL: https://journal-vniispk.ru/RCF/article/view/131537
- DOI: https://doi.org/10.17816/RCF2115-22
- ID: 131537
Cite item
Abstract
The review is a continuation of the previously published one on the toxicity of spherical nanostructures of carbon, namely fullerenes and nanoonions. This review considers data on the toxicity of carbon nanostructures in sp2-hybridization of carbon atoms, which can be considered as formed from graphene sheets, and nanostructures formed by carbon atoms in sp3-hybridization, namely, nanodiamonds. Unfortunately, it should be repeated the conclusion made in the previous review that at the moment there is not enough data to use carbon nanostructures in practice, and therefore it is necessary to develop more effective and informative tests on animals, taking into account the characteristics of each type of nanomaterials.
Full Text
##article.viewOnOriginalSite##About the authors
Elena V. Litasova
Institute of Experimental Medicine
Author for correspondence.
Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-code: 5568-8939
Cand. Sci. (Biol.), leading research associate of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology
Russian Federation, Saint PetersburgVictor V. Iljin
Institute of Experimental Medicine
Email: victor.iljin@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-code: 5559-8089
Cand. Sci. (Chem.), research associate of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology
Russian Federation, Saint PetersburgMaria A. Brusina
Institute of Experimental Medicine
Email: mashasemen@gmail.com
ORCID iD: 0000-0001-8433-120X
SPIN-code: 8953-8772
Cand. Sci. (Chem.), junior research associate of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology
Russian Federation, Saint PetersburgLevon B. Piotrovskiy
Institute of Experimental Medicine
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-code: 2927-6178
Dr. Sci. (Biol.), head of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology
Russian Federation, Saint PetersburgReferences
- Litasova EV, Iljin VV, Myznikov LV, Piotrovskiy LB. Toxicology of carbon nanostructures. Part I. Spherical nanoparticles (fullerenes and nanoonions). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(1):5–15. (In Russ.) doi: 10.17816/RCF2015-15
- Piotrovskiy LB. Essays on nanomedicine. Saint Petersburg: Evropeysky dom; 2013, 207 p. (In Russ.)
- Jabeen S, Kausar A, Muhammad B, et al. A Review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: structure, preparation and properties. Polym Plast Technol Eng. 2015;54(13):1379–1409. doi: 10.1080/03602559.2015.1021489
- Endo M, IIjima S, Dresselhaus M, eds. Carbon nanotubes. Pergamon, 1996, 183 p.
- Iijima S. Helical microtubules in graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0
- Iijima S, Ichihashi T, Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605. doi: 10.1038/363603a0
- Oberlin A, Endo M, Koyama T. High resolution electron microscope observstions of graphitized carbon fibers. Carbon. 1976;14:133–135. doi: 10.1016/0008-6223(76)90124-X
- Bethune DS, Kiang CH, de Vries MS, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363:605–607. doi: 10.1038/363605a0
- Popov V. Carbon nanotubes: properties and application. Mater Sci Engin R. 2004;43(3):61–102. doi: 10.1016/j.mser.2003.10.001
- He H., Pham-Huy L., Dramou P., et al. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int. 2013;2013:578290. doi: 10.1155/2013/578290
- Patel DK, Kim HB, Dutta SD, et al. Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials (Basel). 2020;13(7):1679. doi: 10.3390/ma13071679
- Kolosnjaj-Tabi J, Just J, Hartman KB, et al. Anthropogenic carbon nanotubes found in the airways of parisian children. EBio Medicine. 2015;2(7):1697–1704. doi: 10.1016/j.ebiom.2015.10.012
- Aoki K, Saito N. Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials (Basel). 2020;10(2):264. doi: 10.3390/nano10020264
- Kane AB, Hurt RH, Gao H. The asbestos-carbon nanotube analogy: an update. Toxicol Appl Pharmacol. 2018;361:68–80. doi: 10.1016/j.taap.2018.06.027
- Born P.J.A. Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol. 2002;14(3):311–324. doi: 10.1080/08958370252809086
- Bermudez E, Mangum JB, Wong BA, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77(2):347–357. doi: 10.1093/toxsci/kfh019
- Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339
- Hamilton RF Jr, Tsuruoka S, Wu N, et al. Length, but not reactive edges, of cup-stack MWCNT is responsible for toxicity and acute lung inflammation. Toxicol Pathol. 2018;46(1):62–74. doi: 10.1177/0192623317732303
- Francis AP, Devasena T. Toxicity of carbon nanotubes: A review. Toxicol Ind Health. 2018;34(3):200–210. doi: 10.1177/0748233717747472
- Mohanta D, Patnaik S, Sood S, Das N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J Pharmac Analysis. 2019;9(5): 293–300. doi: 10.1016/j.jpha.2019.04.003
- Samak DH, El-Sayed YS, Shaheen HM, et al. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. Environ Sci Pollut Res Int. 2020;27(16):19058–19072. doi: 10.1007/s11356-018-3675-6
- Saleemi MA, Hosseini Fouladi M, et al. Toxicity of carbon nanotubes: molecular mechanisms, signaling cascades, and remedies in biomedical applications. Chem Res Toxicol. 2021;34(1):24–46. doi: 10.1021/acs.chemrestox.0c00172
- Lam C, James JT, McCluskey R, Hunter R. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–134. doi: 10.1093/toxsci/kfg243
- Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77(1):117–125. doi: 10.1093/toxsci/kfg228
- Huczko A, Lange H, Bystrzejewski M, et al. Pulmonary toxicity of 1-D nanocarbon materials. Fullernes Nanotubes, Carbon Nanostructures. 2005;13:141–145. doi: 10.1081/FST-200050691
- Grubek-Jaworska H, Nejman P, Czuminska K, et al. Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons. Carbon. 2006;44:1057–1063. doi: 10.1016/j.carbon.2005.12.011
- Shvedova AA, Kisin ER, Mercer R, et al. Unusual infflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5): 698–708. doi: 10.1152/ajplung.00084.2005
- Maynard AD, Nanotechnology assessing the risks. Nano Today. 2006;1(2):22–33. doi: 10.1016/S1748-0132(06)70045-7
- Muller J, Huaux F, Lison D. Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon. 2006;44(6): 1048–1056. doi: 10.1016/j.carbon.2005.10.019
- Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon. 2006;44(6):1034–1047. doi: 10.1016/j.carbon.2005.10.011
- Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 2006;6(6):1121–1125. doi: 10.1021/nl060162e
- Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005;39(5):1378–1383. doi: 10.1021/es048729l
- Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon. 2006;44(6): 1070–1078. doi: 10.1016/j.carbon.2005.11.004
- Cui D, Tian F, Ozkan CS, et al. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005;155(1):73–85. doi: 10.1016/j.toxlet.2004.08.015
- Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20): 1909–1926. doi: 10.1080/713853956
- Yan H, Xue Z, Xie J, et al. Toxicity of carbon nanotubes as anti-tumor drug carriers. Internat J Nanomedicine. 2019;14:10179–10194. doi: 10.2147/IJN.S220087
- Ding L., Stilwell J., Zhang T., et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast. Nano Lett. 2005;5(12):2448–2464. doi: 10.1021/nl051748o
- Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc. 2004;126(48):15638–15639. doi: 10.1021/ja0466311
- Garibaldi S, Brunelli C, Bavastrello V, et al. Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology. 2006;17(2):391–397. doi: 10.1088/0957-4484/17/2/008
- Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. J Chem Soc Chem Commun. 2004;1:16–17. doi: 10.1039/B311254C
- Chlopek J, Czajkowska B, Szaraniec B, et al. In vitro studies of carbon nanotubes biocompatibility. Carbon. 2006;44(6):1106–1111. doi: 10.1016/j.carbon.2005.11.022
- Requardt H, Braun A, Steinberg P, et al. Surface defects reduce carbon nanotube toxicity in vitro. Toxicol in Vitro. 2019;60:12–18. doi: 10.1016/j.tiv.2019.03.028
- Ebbesen T. Cones and tubes: geometry in the chemistry of carbon. Acc Chem Res. 1998;31:558–566. doi: 10.1021/ar960168i
- Piotrovskiy LB, Kudryavtseva TA, Litasova EV. Properties and biological potential of single wall carbon nanohorns (SWCNH). Rev Clinical Pharmacol Drug Ther. 2020;18(3):185–195. doi: 10.17816/RCF183185-195
- Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20): 1909–1926. doi: 10.1080/713853956
- Tahara Y, Miyawaki J, Zhang M, et al. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology. 2011;22(26):265106. doi: 10.1088/0957-4484/22/26/265106
- d’Amora M, Camisasca A, Lettieri S, Giordani S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials (Basel). 2017;7(12):414. doi: 10.3390/nano7120414
- Zhang M, Yang M, Bussy C, et al. Biodegradation of carbon nanohorns in macrophage cells. Nanoscale. 2015;7(7):2834–2840. doi: 10.1039/C4NR06175F
- Moschino V, Nesto N, Barison S, et al. A preliminary investigation on nanohorn toxicity in marine mussels and polychaetes. Sci Total Environ. 2014;(468–469):111–119. doi: 10.1016/j.scitotenv.2013.08.020
- Zhang M, Yamaguchi T, Iijima S, Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine. 2013;9(5):657–664. doi: 10.1016/j.nano.2012.11.011
- Schramm F, Lange M, Hoppmann P, Heutelbeck A. Cytotoxicity of carbon nanohorns in different human cells of the respiratory system. J Toxicol Environ Health A. 2016;79(22–23):1085–1093. doi: 10.1080/15287394.2016.1219594
- Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev. 2016;116(8):4850–4883. doi: 10.1021/acs.chemrev.5b00611
- Pippa N, Stangel C, Kastanas I, et al. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. Mater Sci Eng C Mater Biol Appl. 2019;105:110114. doi: 10.1016/j.msec.2019.110114
- Miyako E, Deguchi T, Nakajima Y, et al. Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc Natl Acad Sci USA. 2012;109(19):7523–7528. doi: 10.1073/pnas.1204391109
- Isobe H, Tanaka T, Maeda R, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew Chem Int Ed Engl. 2006;45(5):6676–6680. doi: 10.1002/anie.200601718
- Lacotte S, Garcıa A, Decossas M, et al. Interfacing functionalized carbon nanohorns with primary phagocytic cells. Adv Mater. 2008;20(12):2421–2426. doi: 10.1002/adma.200702753
- Miyawaki J, Yudasaka M, Azami T, et al. Toxicity of single-walled carbon nanohorns. ACS Nano. 2008;2(2):213–226. doi: 10.1021/nn700185t
- Xiang G, Zhang J, Huang R. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines. Int J Nanomedicine. 2014;9(1):759–773. doi: 10.2147/IJN.S56353
- Yang M, Zhang M, Tahara Y, et al. Lysosomal membrane permeabilization: carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxic Appl Pharmacol. 2014;280(1):117–126. doi: 10.1016/j.taap.2014.07.022
- Nakamura M, Tahara Y, Murakami T, et al. Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon. 2014;69):409–416. doi: 10.1016/j.carbon.2013.12.043
- Tahara Y, Nakamura M, Yang M, et al. Lysosomal membrane destabilization induced by high accumulation of single-walled carbon nanohorns in murine macrophage RAW 264.7. Biomaterials. 2012;33(9):2762–2769. doi: 10.1016/j.biomaterials.2011.12.023
- Romero G, Estrela-Lopis I, Castro-Hartmann P, et al. Stepwise surface tailoring of carbon nanotubes with polyelectrolyte brushes and lipid layers to control their intracellular distribution and ‘in vitro’ toxicity. Soft Matter. 2011;7(15):6883–6890. doi: 10.1039/C0SM01511C
- Zhang J, Sun Q, Bo J, et al. G. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines. Int J Nanomedicine. 2014;(9):759–773. doi: 10.2147/IJN.S56353
- Lynch RM, Voy BH, Glass DF, et al. Assessing the pulmonary toxicity of single-walled carbon nanohorns. Nanotoxicology. 2007;1(2):157–166. doi: 10.1080/17435390701598496
- Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34. doi: 10.1021/tx200339h
- Bianco A. Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed. 2013;52(19):4986–4997. doi: 10.1002/anie.201209099
- Tadyszak K, Wychowaniec J, Litowczenko J. Biomedical applications of graphene-based structures. Nanomaterials. 2018;8(11):944. doi: 10.3390/nano8110944
- Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal. 2014;22(1):105–115. doi: 10.1016/j.jfda.2014.01.009
- Nezakati T, Cousins BG, Seifalian AN. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol. 2014;88(11):1987–2012. doi: 10.1007/s00204-014-1361-0
- Seabra AB, Paula AJ, de Lima R, et al. Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol. 2014;27(2):159–168. doi: 10.1021/tx400385x
- Lalwani G, D’Agati M, Khan AM, Sitharaman B. Toxicology of graphene based nanomaterials. Adv Drug Deliv Rev. 2016;105(Pt B): 109–144. doi: 10.1016/l.addr.2016.04.028
- Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. 2016;13(1):57. doi: 10.1186/s12989-016-0168-y
- Devasena T, Francis AP, Ramaprabhu S. Toxicity of Graphene: An Update. Rev Environ Contam Toxicol. 2021;259:51–76. doi: 10.1007/398_2021_78
- Rhazouani A, Gamrani H, El Achaby M, et al. Synthesis and toxicity of graphene oxide nanoparticles: a literature review of in vitro and in vivo studies. Biomed Res Int. 2021;2021):5518999. doi: 10.1155/2021/5518999
- Ema M, Gamo M, Honda K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regulatory Toxicol Pharmacol. 2017;85:7–24. doi: 10.1016/j.yrtph.2017.01.011
- Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–428. doi: 10.1038/nnano.2008.111
- Braakhuis HM, Park MVDZ, Gosens I, et al. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 2014;11:18. doi: 10.1186/1743-8977-11-18
- Donaldson K, Murphy FA, Duffin R, Poland C. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of lung fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5. doi: 10.1186/1743-8977-7-5
- Schinwald A, Murphy F, Askounis A, et al. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology. 2014;8(8):824–832. doi: 10.3109/17435390.2013.831502
- Sasidharan A, Swaroop S, Koduri CK, et al. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylate and PEGylated few-layer graphene sheets in Swiss albino mice: a three month study. Carbon. 2015;95:511–524. doi: 10.1016/j.carbon.2015.08.074
- Ma J, Liu R, Wan X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano. 2015;9(10):10498–10515. doi: 10.1021/acsnano.5b04751
- Liu JH, Wang T, Wang H, et al. Biocompatibility of graphene oxide intravenously administered in mice-effects of dose, size and exposure protocols. Toxicol Res. 2015;4:83–91. doi: 10.1039/C4TX00044G
- Liu JH, Yang ST, Wang H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine (Lond). 2012;7(12):1801–1812. doi: 10.2217/nnm.12.60
- Zhang X, Yin J, Peng C, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49(3):986–995. doi: 10.1016/j.carbon.2010.11.005
- Li B, Zhang XY, Yang JZ, et al. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int J Nanomed. 2014;9:4697–4707. doi: 10.2147/IJN.S66591
- Guo JX, Zhang X, Li QN, Li WX. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol. 2007;34(5): 579–583. doi: 10.1016/j.nucmedbio.2007.03.003
- Wang X, Duch MC, Mansukhani N, et al. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano. 2015;9(3):3032–3043. doi: 10.1021/nn507243w
- Ma-Hock L, Strauss V, Treumann S, et al. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplateles and low surface carbon black. Part Fibre Toxicol. 2013;10:23. doi: 10.1186/1743-8977-10-23
- Shin JH, Han SG, Kim JK, et al. 5-day repeated inhalation and 28-day post-exposure study of graphene. Nanotoxicology. 2015;9(8):1023–1031. doi: 10.3109/17435390.2014.998306
- Kim JK, Shin JH, Lee JS, et al. 28-day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10(7):891–901. doi: 10.3109/17435390.2015.1133865
- Han SG, Kim JK, Shin JH, et al. Pulmonary responses of Sprague-Dawley rats in single inhalation exposure to graphene oxide nanomaterials. Biomed Res Int. 2015;2015:376756. doi: 10.1155/2015/376756
- Duch MC, Budinger GRS, Liang YT, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11(12):5201–5207. doi: 10.1021/nl202515a
- Park EJ, Lee GH, Han BS, et al. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol. 2015;89(9):1557–1568. doi: 10.1007/s00204-014-1303-x
- Mao L, Hu M, Pan B, et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 2016;13:7. doi: 10.1186/s12989-016-0120-1
- Lee JK, Jeong AY, Bae J, et al. The role of surface functionalization on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes of graphene nanoplatelets in rats. Arch Toxicol. 2017;91(2):667–676. doi: 10.1007/s00204-016-1706-y
- Ali-Boucetta H, Bitounis D, Raveendran-Nair R, et al. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Health Mater. 2013;2(3):433–441. doi: 10.1002/adhm.201200248
- Chong Y, Ma Y, Shen H, et al. The in vitro and in vivo toxicity of graphene quantum dots Biomaterials. 2014;35(19):5041–5048. doi: 10.1016/j.biomaterials.2014.03.021
- Stone V, Johnston H, Schins RP. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39(7):613–626. doi: 10.1080/10408440903120975
- Moller P, Jacobsen NR, Folkman JK, et al. Role of oxidative damage in toxicity of particulates. Free Rad Res. 2010;44(1):1–46. doi: 10.3109/10715760903300691
- Zhang Y, Ali SF, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neuralphaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4(6):3181–3186. doi: 10.1021/nn1007176
- Liu L, Zhu C, Fan M, et al. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria. Nanoscale. 2015;7(32):13619–13628. doi: 10.1039/C5NR02502H
- Hu W, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5(5):3693–3700. doi: 10.1021/nn200021j
- Gebel T, Foth H, Damm G, et al. Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol. 2014;88(12):2191–2211. doi: 10.1007/s00204-014-1383-7
- Khan H, Shanker R. Toxicity of nanomaterials. Biomed Res Int. 2015;2015:521014. doi: 10.1155/2015/521014
- Rukovodstvo po eksperimentalnomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. Khabriev RU, ed. 2 edition. Moscow: Meditsina; 2005. 832 p. (In Russ.)
- Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7(1): 11–23. doi: 10.1038/nnano.2011.209
- Tang GF, Zhang MR, Liu QQ, et al. Applications of nanodiamonds in the diagnosis and treatment of neurological diseases. J Nanopart Res. 2022;24(3):55. doi: 10.1007/s11051-022-05434-2
- Vlasov II, Shiryaev AA, Rendler T, et al. Molecular-sized fluorescent nanodiamonds. Nat Nanotechnol. 2014;9(1):54–58. doi: 10.1038/nnano.2013.255
- Boudou JP, Tisler J, Reuter R, et al. Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diamond Related Materials. 2013;37:80–86. doi: 10.1016/j.diamond.2013.05.006
- Laan van der K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small. 2018;14(19): e1703838. doi: 10.1002/smll.201703838
- Yu SJ, Kang MW, Chang HC, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127(50):17604–17605. doi: 10.1021/ja0567081
- Schirhagl R, Chang K, Loretz M, Degen CL. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem. 2014;65:83–105. doi: 10.1146/annurev-physchem-040513-103659
- Mukherjee A, Majumdar S, Servin AD, et al. Carbon Nanomaterials in Agriculture: A Critical Review. Front Plant Sci. 2016;7:172. doi: 10.3389/fpls.2016.00172
- Terada D, Genjo T, Segawa TF, et al. Nanodiamonds for bioapplications — specific targeting strategies. Biochim Biophys Acta Gen Subj. 2020;1864(2):129354. doi: 10.1016/j.bbagen.2019.04.019
- Liu YY, Chang BM, Chang HC. Nanodiamond-enabled biomedical imaging. Nanomedicine (Lond). 2020;15(16):1599–1616. doi: 10.2217/nnm-2020-0091
- Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C Mater Biol Appl. 2019;97:913–931. doi: 10.1016/j.msec.2018.12.073
- The Autobiography of Benvenuto Cellini. (Penguin Classics); Revised ed. Edition. 1999. 465 p.
- Schrand AM, Huang H, Carlson C, et al. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007;111(1):2–7. doi: 10.1021/jp066387v
- Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplication. Critical Rev Solid State Mater Sci. 2009;34(1):18–74. doi: 10.1080/10408430902831987
- Dolmatov VYu. Detonatsionnye nanoalmazy. Poluchenie, svoistva, primenenie. Saint Petersburg: Professional; 2011. 534 p. (In Russ.)
- Bondon N, Raehm L, Charnay C, et al. Nanodiamonds for bioapplications, recent developments. J Mater Chem B. 2020;8(48): 10878–10896. doi: 10.1039/d0tb02221g
- Lee DK, Ha S, Jeon S, et al. The sp3/sp2 carbon ratio as a modulator of in vivo and in vitro toxicity of the chemically purified detonation-synthesized nanodiamond via the reactive oxygen species generation. Nanotoxicology. 2020;14(9):1213–1226. doi: 10.1080/17435390.2020.1813825
- Karpeta-Kaczmarek J, Kędziorski A, Augustyniak-Jabłokow MA, et al. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environmental Research. 2018;166:602–609. doi: 10.1016/j.envres.2018.05.027
- Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamonds. Nanotechnology. 2017;28(25):252001. doi: 10.1088/1361-6528/aa6ae4
- Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2020;113:110996. doi: 10.1016/j.msec.2020.110996
- Zhang X, Yin J, Kang C, et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicology Letters. 2010;198(2):237–243. doi: 10.1016/j.toxlet.2010.07.001
- Raja IS, Song SJ, Kang MS, et al. Toxicity of zero- and one-dimensional carbon nanomaterials. Nanomaterials (Basel). 2019;9(9):1214. doi: 10.3390/nano9091214
- Yuan Y, Wang X, Jia G, et al. Pulmonary toxicity and translocation of nanodiamonds in mice. Diamond Relat Mater. 2010;19(4):291. doi: 10.1016/j.diamond.2009.11.022
- Ma Q, Zhang Q, Yang S, et al. Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Colloids Surf B Biointerfaces. 2020;187:110658. doi: 10.1016/j.colsurfb.2019.110658
- Chow EK, Zhang XQ, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Trans Med. 2011;3(73):73ra21. doi: 10.1126/scitranslmed.3001713
- Mitura KA, Włodarczyk E. Fluorescent nanodiamonds in biomedical applications. J AOAC Int. 2018;101(5):1297–1307. doi: 10.5740/jaoacint.18-0044
- Hemelaar SR, Saspaanithy B, L’Hommelet SRM, et al. The response of HeLa cells to fluorescent nanodiamond uptake. Sensors. 2018;18(2):355. doi: 10.3390/s18020355
- Prabhakar N, Khan MH, Peurla M, et al. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega. 2017;2(6):2689–2693. doi: 10.1021/acsomega.7b00339
- Puzyr AP, Baron AV, Purtov KV, et al. Nanodiamonds with novel properties: a biological study. Diamond Relat Mater. 2007;16(12):2124–2128. doi: 10.1016/j.diamond.2007.07.025
- Chang IP, Hwang KC, Chiang CS. Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J Am Chem Soc. 2008;130(46):15476–15481. doi: 10.1021/ja804253y
- Mochalin VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc. 2009;131(13): 4594–4595. doi: 10.1021/ja9004514
- Chang CC, Zhang B, Li CY, et al. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds. Proc SPIE. 2012;8272:827205–827208. doi: 10.1117/12.907181
- Lin YC, Wu KT, Lin ZR, et al. Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo. J Biophotonics. 2016;9(8):827–836. doi: 10.1002/jbio.201500304
- Mohan N, Chen CS, Hsieh HH, et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10(9):3692–3699. doi: 10.1021/nl1021909
- Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12. doi: 10.1016/j.jpha.2019.09.003
- Chao JI, Perevedentseva E, Chung PH, et al. Nanometer-sized diamond particle as a probe for biolabeling. Biophysical J. 2007;93(6):2199–2208. doi: 10.1529/biophysj.107.108134
- Hemelaar SR, Saspaanithy B, et al. The Response of HeLa Cells to Fluorescent Nano Diamond Uptake. Sensors (Basel). 2018;18(2):355. doi: 10.3390/s18020355
- Su S, Wang S, Qiu J. Biofunctionalization of nanodiamonds through facile cytochrome P450 catalysis. Sci Adv Mater. 2014;6(1):203–208. doi: 10.1166/sam.2014.1689
- Pan Y, Ong CE, Pung YF, Chieng JY. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes — a literature-based review. Xenobiotica. 2019;49(7): 863–876. doi: 10.1080/00498254.2018.1503360
- Hodek P, Bortek-Dohalská L, Sopko B, et al. Structural requirements for inhibitors of cytochromes P450 2B: assessment of the enzyme interaction with diamondoids. J Enzyme Inhib Med Chem. 2005;20(1):25–33. doi: 10.1080/14756360400024324
