Toxicology of carbon nanostructures. Part 2. Nanoscale materials based on graphene sheets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review is a continuation of the previously published one on the toxicity of spherical nanostructures of carbon, namely fullerenes and nanoonions. This review considers data on the toxicity of carbon nanostructures in sp2-hybridization of carbon atoms, which can be considered as formed from graphene sheets, and nanostructures formed by carbon atoms in sp3-hybridization, namely, nanodiamonds. Unfortunately, it should be repeated the conclusion made in the previous review that at the moment there is not enough data to use carbon nanostructures in practice, and therefore it is necessary to develop more effective and informative tests on animals, taking into account the characteristics of each type of nanomaterials.

About the authors

Elena V. Litasova

Institute of Experimental Medicine

Author for correspondence.
Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-code: 5568-8939

Cand. Sci. (Biol.), leading research associate of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology

Russian Federation, Saint Petersburg

Victor V. Iljin

Institute of Experimental Medicine

Email: victor.iljin@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-code: 5559-8089

Cand. Sci. (Chem.), research associate of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology

Russian Federation, Saint Petersburg

Maria A. Brusina

Institute of Experimental Medicine

Email: mashasemen@gmail.com
ORCID iD: 0000-0001-8433-120X
SPIN-code: 8953-8772

Cand. Sci. (Chem.), junior research associate of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology

Russian Federation, Saint Petersburg

Levon B. Piotrovskiy

Institute of Experimental Medicine

Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-code: 2927-6178

Dr. Sci. (Biol.), head of the Laboratory of synthesis and nanotechnology of drag, Department of neuropharmacology

Russian Federation, Saint Petersburg

References

  1. Litasova EV, Iljin VV, Myznikov LV, Piotrovskiy LB. Toxicology of carbon nanostructures. Part I. Spherical nanoparticles (fullerenes and nanoonions). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(1):5–15. (In Russ.) doi: 10.17816/RCF2015-15
  2. Piotrovskiy LB. Essays on nanomedicine. Saint Petersburg: Evropeysky dom; 2013, 207 p. (In Russ.)
  3. Jabeen S, Kausar A, Muhammad B, et al. A Review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: structure, preparation and properties. Polym Plast Technol Eng. 2015;54(13):1379–1409. doi: 10.1080/03602559.2015.1021489
  4. Endo M, IIjima S, Dresselhaus M, eds. Carbon nanotubes. Pergamon, 1996, 183 p.
  5. Iijima S. Helical microtubules in graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0
  6. Iijima S, Ichihashi T, Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605. doi: 10.1038/363603a0
  7. Oberlin A, Endo M, Koyama T. High resolution electron microscope observstions of graphitized carbon fibers. Carbon. 1976;14:133–135. doi: 10.1016/0008-6223(76)90124-X
  8. Bethune DS, Kiang CH, de Vries MS, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363:605–607. doi: 10.1038/363605a0
  9. Popov V. Carbon nanotubes: properties and application. Mater Sci Engin R. 2004;43(3):61–102. doi: 10.1016/j.mser.2003.10.001
  10. He H., Pham-Huy L., Dramou P., et al. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int. 2013;2013:578290. doi: 10.1155/2013/578290
  11. Patel DK, Kim HB, Dutta SD, et al. Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials (Basel). 2020;13(7):1679. doi: 10.3390/ma13071679
  12. Kolosnjaj-Tabi J, Just J, Hartman KB, et al. Anthropogenic carbon nanotubes found in the airways of parisian children. EBio Medicine. 2015;2(7):1697–1704. doi: 10.1016/j.ebiom.2015.10.012
  13. Aoki K, Saito N. Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials (Basel). 2020;10(2):264. doi: 10.3390/nano10020264
  14. Kane AB, Hurt RH, Gao H. The asbestos-carbon nanotube analogy: an update. Toxicol Appl Pharmacol. 2018;361:68–80. doi: 10.1016/j.taap.2018.06.027
  15. Born P.J.A. Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol. 2002;14(3):311–324. doi: 10.1080/08958370252809086
  16. Bermudez E, Mangum JB, Wong BA, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77(2):347–357. doi: 10.1093/toxsci/kfh019
  17. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339
  18. Hamilton RF Jr, Tsuruoka S, Wu N, et al. Length, but not reactive edges, of cup-stack MWCNT is responsible for toxicity and acute lung inflammation. Toxicol Pathol. 2018;46(1):62–74. doi: 10.1177/0192623317732303
  19. Francis AP, Devasena T. Toxicity of carbon nanotubes: A review. Toxicol Ind Health. 2018;34(3):200–210. doi: 10.1177/0748233717747472
  20. Mohanta D, Patnaik S, Sood S, Das N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J Pharmac Analysis. 2019;9(5): 293–300. doi: 10.1016/j.jpha.2019.04.003
  21. Samak DH, El-Sayed YS, Shaheen HM, et al. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. Environ Sci Pollut Res Int. 2020;27(16):19058–19072. doi: 10.1007/s11356-018-3675-6
  22. Saleemi MA, Hosseini Fouladi M, et al. Toxicity of carbon nanotubes: molecular mechanisms, signaling cascades, and remedies in biomedical applications. Chem Res Toxicol. 2021;34(1):24–46. doi: 10.1021/acs.chemrestox.0c00172
  23. Lam C, James JT, McCluskey R, Hunter R. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–134. doi: 10.1093/toxsci/kfg243
  24. Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77(1):117–125. doi: 10.1093/toxsci/kfg228
  25. Huczko A, Lange H, Bystrzejewski M, et al. Pulmonary toxicity of 1-D nanocarbon materials. Fullernes Nanotubes, Carbon Nanostructures. 2005;13:141–145. doi: 10.1081/FST-200050691
  26. Grubek-Jaworska H, Nejman P, Czuminska K, et al. Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons. Carbon. 2006;44:1057–1063. doi: 10.1016/j.carbon.2005.12.011
  27. Shvedova AA, Kisin ER, Mercer R, et al. Unusual infflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5): 698–708. doi: 10.1152/ajplung.00084.2005
  28. Maynard AD, Nanotechnology assessing the risks. Nano Today. 2006;1(2):22–33. doi: 10.1016/S1748-0132(06)70045-7
  29. Muller J, Huaux F, Lison D. Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon. 2006;44(6): 1048–1056. doi: 10.1016/j.carbon.2005.10.019
  30. Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon. 2006;44(6):1034–1047. doi: 10.1016/j.carbon.2005.10.011
  31. Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 2006;6(6):1121–1125. doi: 10.1021/nl060162e
  32. Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005;39(5):1378–1383. doi: 10.1021/es048729l
  33. Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon. 2006;44(6): 1070–1078. doi: 10.1016/j.carbon.2005.11.004
  34. Cui D, Tian F, Ozkan CS, et al. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005;155(1):73–85. doi: 10.1016/j.toxlet.2004.08.015
  35. Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20): 1909–1926. doi: 10.1080/713853956
  36. Yan H, Xue Z, Xie J, et al. Toxicity of carbon nanotubes as anti-tumor drug carriers. Internat J Nanomedicine. 2019;14:10179–10194. doi: 10.2147/IJN.S220087
  37. Ding L., Stilwell J., Zhang T., et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast. Nano Lett. 2005;5(12):2448–2464. doi: 10.1021/nl051748o
  38. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc. 2004;126(48):15638–15639. doi: 10.1021/ja0466311
  39. Garibaldi S, Brunelli C, Bavastrello V, et al. Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology. 2006;17(2):391–397. doi: 10.1088/0957-4484/17/2/008
  40. Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. J Chem Soc Chem Commun. 2004;1:16–17. doi: 10.1039/B311254C
  41. Chlopek J, Czajkowska B, Szaraniec B, et al. In vitro studies of carbon nanotubes biocompatibility. Carbon. 2006;44(6):1106–1111. doi: 10.1016/j.carbon.2005.11.022
  42. Requardt H, Braun A, Steinberg P, et al. Surface defects reduce carbon nanotube toxicity in vitro. Toxicol in Vitro. 2019;60:12–18. doi: 10.1016/j.tiv.2019.03.028
  43. Ebbesen T. Cones and tubes: geometry in the chemistry of carbon. Acc Chem Res. 1998;31:558–566. doi: 10.1021/ar960168i
  44. Piotrovskiy LB, Kudryavtseva TA, Litasova EV. Properties and biological potential of single wall carbon nanohorns (SWCNH). Rev Clinical Pharmacol Drug Ther. 2020;18(3):185–195. doi: 10.17816/RCF183185-195
  45. Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20): 1909–1926. doi: 10.1080/713853956
  46. Tahara Y, Miyawaki J, Zhang M, et al. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology. 2011;22(26):265106. doi: 10.1088/0957-4484/22/26/265106
  47. d’Amora M, Camisasca A, Lettieri S, Giordani S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials (Basel). 2017;7(12):414. doi: 10.3390/nano7120414
  48. Zhang M, Yang M, Bussy C, et al. Biodegradation of carbon nanohorns in macrophage cells. Nanoscale. 2015;7(7):2834–2840. doi: 10.1039/C4NR06175F
  49. Moschino V, Nesto N, Barison S, et al. A preliminary investigation on nanohorn toxicity in marine mussels and polychaetes. Sci Total Environ. 2014;(468–469):111–119. doi: 10.1016/j.scitotenv.2013.08.020
  50. Zhang M, Yamaguchi T, Iijima S, Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine. 2013;9(5):657–664. doi: 10.1016/j.nano.2012.11.011
  51. Schramm F, Lange M, Hoppmann P, Heutelbeck A. Cytotoxicity of carbon nanohorns in different human cells of the respiratory system. J Toxicol Environ Health A. 2016;79(22–23):1085–1093. doi: 10.1080/15287394.2016.1219594
  52. Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev. 2016;116(8):4850–4883. doi: 10.1021/acs.chemrev.5b00611
  53. Pippa N, Stangel C, Kastanas I, et al. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. Mater Sci Eng C Mater Biol Appl. 2019;105:110114. doi: 10.1016/j.msec.2019.110114
  54. Miyako E, Deguchi T, Nakajima Y, et al. Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc Natl Acad Sci USA. 2012;109(19):7523–7528. doi: 10.1073/pnas.1204391109
  55. Isobe H, Tanaka T, Maeda R, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew Chem Int Ed Engl. 2006;45(5):6676–6680. doi: 10.1002/anie.200601718
  56. Lacotte S, Garcıa A, Decossas M, et al. Interfacing functionalized carbon nanohorns with primary phagocytic cells. Adv Mater. 2008;20(12):2421–2426. doi: 10.1002/adma.200702753
  57. Miyawaki J, Yudasaka M, Azami T, et al. Toxicity of single-walled carbon nanohorns. ACS Nano. 2008;2(2):213–226. doi: 10.1021/nn700185t
  58. Xiang G, Zhang J, Huang R. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines. Int J Nanomedicine. 2014;9(1):759–773. doi: 10.2147/IJN.S56353
  59. Yang M, Zhang M, Tahara Y, et al. Lysosomal membrane permeabilization: carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxic Appl Pharmacol. 2014;280(1):117–126. doi: 10.1016/j.taap.2014.07.022
  60. Nakamura M, Tahara Y, Murakami T, et al. Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon. 2014;69):409–416. doi: 10.1016/j.carbon.2013.12.043
  61. Tahara Y, Nakamura M, Yang M, et al. Lysosomal membrane destabilization induced by high accumulation of single-walled carbon nanohorns in murine macrophage RAW 264.7. Biomaterials. 2012;33(9):2762–2769. doi: 10.1016/j.biomaterials.2011.12.023
  62. Romero G, Estrela-Lopis I, Castro-Hartmann P, et al. Stepwise surface tailoring of carbon nanotubes with polyelectrolyte brushes and lipid layers to control their intracellular distribution and ‘in vitro’ toxicity. Soft Matter. 2011;7(15):6883–6890. doi: 10.1039/C0SM01511C
  63. Zhang J, Sun Q, Bo J, et al. G. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines. Int J Nanomedicine. 2014;(9):759–773. doi: 10.2147/IJN.S56353
  64. Lynch RM, Voy BH, Glass DF, et al. Assessing the pulmonary toxicity of single-walled carbon nanohorns. Nanotoxicology. 2007;1(2):157–166. doi: 10.1080/17435390701598496
  65. Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34. doi: 10.1021/tx200339h
  66. Bianco A. Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed. 2013;52(19):4986–4997. doi: 10.1002/anie.201209099
  67. Tadyszak K, Wychowaniec J, Litowczenko J. Biomedical applications of graphene-based structures. Nanomaterials. 2018;8(11):944. doi: 10.3390/nano8110944
  68. Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal. 2014;22(1):105–115. doi: 10.1016/j.jfda.2014.01.009
  69. Nezakati T, Cousins BG, Seifalian AN. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol. 2014;88(11):1987–2012. doi: 10.1007/s00204-014-1361-0
  70. Seabra AB, Paula AJ, de Lima R, et al. Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol. 2014;27(2):159–168. doi: 10.1021/tx400385x
  71. Lalwani G, D’Agati M, Khan AM, Sitharaman B. Toxicology of graphene based nanomaterials. Adv Drug Deliv Rev. 2016;105(Pt B): 109–144. doi: 10.1016/l.addr.2016.04.028
  72. Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. 2016;13(1):57. doi: 10.1186/s12989-016-0168-y
  73. Devasena T, Francis AP, Ramaprabhu S. Toxicity of Graphene: An Update. Rev Environ Contam Toxicol. 2021;259:51–76. doi: 10.1007/398_2021_78
  74. Rhazouani A, Gamrani H, El Achaby M, et al. Synthesis and toxicity of graphene oxide nanoparticles: a literature review of in vitro and in vivo studies. Biomed Res Int. 2021;2021):5518999. doi: 10.1155/2021/5518999
  75. Ema M, Gamo M, Honda K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regulatory Toxicol Pharmacol. 2017;85:7–24. doi: 10.1016/j.yrtph.2017.01.011
  76. Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–428. doi: 10.1038/nnano.2008.111
  77. Braakhuis HM, Park MVDZ, Gosens I, et al. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 2014;11:18. doi: 10.1186/1743-8977-11-18
  78. Donaldson K, Murphy FA, Duffin R, Poland C. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of lung fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5. doi: 10.1186/1743-8977-7-5
  79. Schinwald A, Murphy F, Askounis A, et al. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology. 2014;8(8):824–832. doi: 10.3109/17435390.2013.831502
  80. Sasidharan A, Swaroop S, Koduri CK, et al. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylate and PEGylated few-layer graphene sheets in Swiss albino mice: a three month study. Carbon. 2015;95:511–524. doi: 10.1016/j.carbon.2015.08.074
  81. Ma J, Liu R, Wan X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano. 2015;9(10):10498–10515. doi: 10.1021/acsnano.5b04751
  82. Liu JH, Wang T, Wang H, et al. Biocompatibility of graphene oxide intravenously administered in mice-effects of dose, size and exposure protocols. Toxicol Res. 2015;4:83–91. doi: 10.1039/C4TX00044G
  83. Liu JH, Yang ST, Wang H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine (Lond). 2012;7(12):1801–1812. doi: 10.2217/nnm.12.60
  84. Zhang X, Yin J, Peng C, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49(3):986–995. doi: 10.1016/j.carbon.2010.11.005
  85. Li B, Zhang XY, Yang JZ, et al. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int J Nanomed. 2014;9:4697–4707. doi: 10.2147/IJN.S66591
  86. Guo JX, Zhang X, Li QN, Li WX. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol. 2007;34(5): 579–583. doi: 10.1016/j.nucmedbio.2007.03.003
  87. Wang X, Duch MC, Mansukhani N, et al. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano. 2015;9(3):3032–3043. doi: 10.1021/nn507243w
  88. Ma-Hock L, Strauss V, Treumann S, et al. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplateles and low surface carbon black. Part Fibre Toxicol. 2013;10:23. doi: 10.1186/1743-8977-10-23
  89. Shin JH, Han SG, Kim JK, et al. 5-day repeated inhalation and 28-day post-exposure study of graphene. Nanotoxicology. 2015;9(8):1023–1031. doi: 10.3109/17435390.2014.998306
  90. Kim JK, Shin JH, Lee JS, et al. 28-day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10(7):891–901. doi: 10.3109/17435390.2015.1133865
  91. Han SG, Kim JK, Shin JH, et al. Pulmonary responses of Sprague-Dawley rats in single inhalation exposure to graphene oxide nanomaterials. Biomed Res Int. 2015;2015:376756. doi: 10.1155/2015/376756
  92. Duch MC, Budinger GRS, Liang YT, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11(12):5201–5207. doi: 10.1021/nl202515a
  93. Park EJ, Lee GH, Han BS, et al. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol. 2015;89(9):1557–1568. doi: 10.1007/s00204-014-1303-x
  94. Mao L, Hu M, Pan B, et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 2016;13:7. doi: 10.1186/s12989-016-0120-1
  95. Lee JK, Jeong AY, Bae J, et al. The role of surface functionalization on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes of graphene nanoplatelets in rats. Arch Toxicol. 2017;91(2):667–676. doi: 10.1007/s00204-016-1706-y
  96. Ali-Boucetta H, Bitounis D, Raveendran-Nair R, et al. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Health Mater. 2013;2(3):433–441. doi: 10.1002/adhm.201200248
  97. Chong Y, Ma Y, Shen H, et al. The in vitro and in vivo toxicity of graphene quantum dots Biomaterials. 2014;35(19):5041–5048. doi: 10.1016/j.biomaterials.2014.03.021
  98. Stone V, Johnston H, Schins RP. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39(7):613–626. doi: 10.1080/10408440903120975
  99. Moller P, Jacobsen NR, Folkman JK, et al. Role of oxidative damage in toxicity of particulates. Free Rad Res. 2010;44(1):1–46. doi: 10.3109/10715760903300691
  100. Zhang Y, Ali SF, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neuralphaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4(6):3181–3186. doi: 10.1021/nn1007176
  101. Liu L, Zhu C, Fan M, et al. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria. Nanoscale. 2015;7(32):13619–13628. doi: 10.1039/C5NR02502H
  102. Hu W, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5(5):3693–3700. doi: 10.1021/nn200021j
  103. Gebel T, Foth H, Damm G, et al. Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol. 2014;88(12):2191–2211. doi: 10.1007/s00204-014-1383-7
  104. Khan H, Shanker R. Toxicity of nanomaterials. Biomed Res Int. 2015;2015:521014. doi: 10.1155/2015/521014
  105. Rukovodstvo po eksperimentalnomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. Khabriev RU, ed. 2 edition. Moscow: Meditsina; 2005. 832 p. (In Russ.)
  106. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7(1): 11–23. doi: 10.1038/nnano.2011.209
  107. Tang GF, Zhang MR, Liu QQ, et al. Applications of nanodiamonds in the diagnosis and treatment of neurological diseases. J Nanopart Res. 2022;24(3):55. doi: 10.1007/s11051-022-05434-2
  108. Vlasov II, Shiryaev AA, Rendler T, et al. Molecular-sized fluorescent nanodiamonds. Nat Nanotechnol. 2014;9(1):54–58. doi: 10.1038/nnano.2013.255
  109. Boudou JP, Tisler J, Reuter R, et al. Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diamond Related Materials. 2013;37:80–86. doi: 10.1016/j.diamond.2013.05.006
  110. Laan van der K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small. 2018;14(19): e1703838. doi: 10.1002/smll.201703838
  111. Yu SJ, Kang MW, Chang HC, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127(50):17604–17605. doi: 10.1021/ja0567081
  112. Schirhagl R, Chang K, Loretz M, Degen CL. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem. 2014;65:83–105. doi: 10.1146/annurev-physchem-040513-103659
  113. Mukherjee A, Majumdar S, Servin AD, et al. Carbon Nanomaterials in Agriculture: A Critical Review. Front Plant Sci. 2016;7:172. doi: 10.3389/fpls.2016.00172
  114. Terada D, Genjo T, Segawa TF, et al. Nanodiamonds for bioapplications — specific targeting strategies. Biochim Biophys Acta Gen Subj. 2020;1864(2):129354. doi: 10.1016/j.bbagen.2019.04.019
  115. Liu YY, Chang BM, Chang HC. Nanodiamond-enabled biomedical imaging. Nanomedicine (Lond). 2020;15(16):1599–1616. doi: 10.2217/nnm-2020-0091
  116. Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C Mater Biol Appl. 2019;97:913–931. doi: 10.1016/j.msec.2018.12.073
  117. The Autobiography of Benvenuto Cellini. (Penguin Classics); Revised ed. Edition. 1999. 465 p.
  118. Schrand AM, Huang H, Carlson C, et al. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007;111(1):2–7. doi: 10.1021/jp066387v
  119. Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplication. Critical Rev Solid State Mater Sci. 2009;34(1):18–74. doi: 10.1080/10408430902831987
  120. Dolmatov VYu. Detonatsionnye nanoalmazy. Poluchenie, svoistva, primenenie. Saint Petersburg: Professional; 2011. 534 p. (In Russ.)
  121. Bondon N, Raehm L, Charnay C, et al. Nanodiamonds for bioapplications, recent developments. J Mater Chem B. 2020;8(48): 10878–10896. doi: 10.1039/d0tb02221g
  122. Lee DK, Ha S, Jeon S, et al. The sp3/sp2 carbon ratio as a modulator of in vivo and in vitro toxicity of the chemically purified detonation-synthesized nanodiamond via the reactive oxygen species generation. Nanotoxicology. 2020;14(9):1213–1226. doi: 10.1080/17435390.2020.1813825
  123. Karpeta-Kaczmarek J, Kędziorski A, Augustyniak-Jabłokow MA, et al. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environmental Research. 2018;166:602–609. doi: 10.1016/j.envres.2018.05.027
  124. Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamonds. Nanotechnology. 2017;28(25):252001. doi: 10.1088/1361-6528/aa6ae4
  125. Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2020;113:110996. doi: 10.1016/j.msec.2020.110996
  126. Zhang X, Yin J, Kang C, et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicology Letters. 2010;198(2):237–243. doi: 10.1016/j.toxlet.2010.07.001
  127. Raja IS, Song SJ, Kang MS, et al. Toxicity of zero- and one-dimensional carbon nanomaterials. Nanomaterials (Basel). 2019;9(9):1214. doi: 10.3390/nano9091214
  128. Yuan Y, Wang X, Jia G, et al. Pulmonary toxicity and translocation of nanodiamonds in mice. Diamond Relat Mater. 2010;19(4):291. doi: 10.1016/j.diamond.2009.11.022
  129. Ma Q, Zhang Q, Yang S, et al. Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Colloids Surf B Biointerfaces. 2020;187:110658. doi: 10.1016/j.colsurfb.2019.110658
  130. Chow EK, Zhang XQ, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Trans Med. 2011;3(73):73ra21. doi: 10.1126/scitranslmed.3001713
  131. Mitura KA, Włodarczyk E. Fluorescent nanodiamonds in biomedical applications. J AOAC Int. 2018;101(5):1297–1307. doi: 10.5740/jaoacint.18-0044
  132. Hemelaar SR, Saspaanithy B, L’Hommelet SRM, et al. The response of HeLa cells to fluorescent nanodiamond uptake. Sensors. 2018;18(2):355. doi: 10.3390/s18020355
  133. Prabhakar N, Khan MH, Peurla M, et al. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega. 2017;2(6):2689–2693. doi: 10.1021/acsomega.7b00339
  134. Puzyr AP, Baron AV, Purtov KV, et al. Nanodiamonds with novel properties: a biological study. Diamond Relat Mater. 2007;16(12):2124–2128. doi: 10.1016/j.diamond.2007.07.025
  135. Chang IP, Hwang KC, Chiang CS. Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J Am Chem Soc. 2008;130(46):15476–15481. doi: 10.1021/ja804253y
  136. Mochalin VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc. 2009;131(13): 4594–4595. doi: 10.1021/ja9004514
  137. Chang CC, Zhang B, Li CY, et al. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds. Proc SPIE. 2012;8272:827205–827208. doi: 10.1117/12.907181
  138. Lin YC, Wu KT, Lin ZR, et al. Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo. J Biophotonics. 2016;9(8):827–836. doi: 10.1002/jbio.201500304
  139. Mohan N, Chen CS, Hsieh HH, et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10(9):3692–3699. doi: 10.1021/nl1021909
  140. Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12. doi: 10.1016/j.jpha.2019.09.003
  141. Chao JI, Perevedentseva E, Chung PH, et al. Nanometer-sized diamond particle as a probe for biolabeling. Biophysical J. 2007;93(6):2199–2208. doi: 10.1529/biophysj.107.108134
  142. Hemelaar SR, Saspaanithy B, et al. The Response of HeLa Cells to Fluorescent Nano Diamond Uptake. Sensors (Basel). 2018;18(2):355. doi: 10.3390/s18020355
  143. Su S, Wang S, Qiu J. Biofunctionalization of nanodiamonds through facile cytochrome P450 catalysis. Sci Adv Mater. 2014;6(1):203–208. doi: 10.1166/sam.2014.1689
  144. Pan Y, Ong CE, Pung YF, Chieng JY. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes — a literature-based review. Xenobiotica. 2019;49(7): 863–876. doi: 10.1080/00498254.2018.1503360
  145. Hodek P, Bortek-Dohalská L, Sopko B, et al. Structural requirements for inhibitors of cytochromes P450 2B: assessment of the enzyme interaction with diamondoids. J Enzyme Inhib Med Chem. 2005;20(1):25–33. doi: 10.1080/14756360400024324

Copyright (c) 2023 ECO-vector LLC



 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».