Hypoxic irreversible brain cells damage, associated risk factors and antihypoxants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is reported that in the final stage of many diseases the immediate cause of biological death in humans and warm-blooded animals is hypoxic irreversible damage to brain cells. This explains the fact that to prevent biological death in all critical conditions without exception, inhalation with breathing gases containing oxygen has long been successfully used. This is also why oxygenation of the blood is considered one of the main conditions for preserving human life in all critical situations and forms the basis of emergency medical care in the intensive care unit. However, inhalation of oxygen gas and increasing blood oxygen saturation should be carried out as early as possible, and more precisely — before the onset of the stage of hypoxic irreversible damage in brain cells. The fact is that after the onset of irreversible da­mage brain cells die even in the presence of oxygen. In this connection, the mechanisms of adaptation of the organism to oxygen deficiency play a great role for longer preservation of brain cells viability and human life in conditions of hypoxemia. In order to increase resistance to hypoxemia, antihypoxants are traditionally used. But they can preserve the viability of brain cells not always, but only if they are introduced into the body before the onset of hypoxic irreversible damage to brain cells and in the case of unused reserves of adaptation to hypoxemia in the body. Risk factors of hypoxic irreversible damage of brain cells are indicated, among which excessively long duration of hypoxemia and hyperthermia are emphasized. It is shown that the most important circumstance for the development of hypoxic irreversible damage of brain cells is not so much the degree of hypoxemia as the degree of hypoxia of brain tissue and its duration, which exceeds the period of human resistance to hypoxia. It has been shown that human resistance to hypoxia can be assessed using the Stange test. It has been reported that fever and local cerebral hyperthermia decrease, and hibernation and local cerebral hypothermia increase, the resistance of brain cells to hypoxia. In this regard, recommendations not only to eliminate fever and local inflammatory processes in the head, but also recommendations to reduce brain temperature are highly appropriate to improve resistance to hypoxia. It is pointed out that among the methods of local therapeutic hypothermia, targeted temperature management is the most advanced. In addition, it is reported that in recent years a new group of promising antihypoxants — alkaline solutions of hydrogen peroxide — has been created. It is shown that hydrogen peroxide is able to decompose very quickly into water and oxygen gas under the action of catalase, which is found in all tissues. The peculiarities of using alkaline solutions of hydrogen peroxide as antihypoxants we all have to study in the future.

About the authors

Aleksandr L Urakov

Izhevsk State Medical Academy

Author for correspondence.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660

Dr. Sci. (Medicine), Professor

Russian Federation, Izhevsk

Natalya A. Urakova

Izhevsk State Medical Academy

Email: urakovanatal@mail.ru
ORCID iD: 0000-0002-4233-9550
SPIN-code: 4858-1896

Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Izhevsk

Petr D. Shabanov

Institute of Experimental Medicine

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127

Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

References

  1. Zhongyuan S, Xuehan N, Pengguo H, et al. Comparison of physiological responses to hypoxia at high altitudes between highlanders and lowlanders. Sci Sin. 1979;22(12):1455–1469.
  2. Yu J, Zhang Y, Hu X, et al. Hypoxia-sensitive materials for biomedical applications. Ann Biomed Eng. 2016;44(6):1931–1945. doi: 10.1007/s10439-016-1578-6
  3. Nakamura N, Shi X, Darabi R, Li Y. Hypoxia in cell reprogramming and the epigenetic regulations. Front Cell Dev Biol. 2021;9:609984. doi: 10.3389/fcell.2021.609984
  4. Laursen JC, Mizrak HI, Kufaishi H, et al. Lower blood oxygen saturation is associated with microvascular complications in individuals with type 1 diabetes. J Clin Endocrinol Metab. 2022;108(1):99–106. doi: 10.1210/clinem/dgac559
  5. Burykh EA. Interaction of hypocapnia, hypoxia, brain blood flow, and brain electrical activity in voluntary hyperventilation in humans. Neurosci Behav Physiol. 2008;38(7):647–659. doi: 10.1007/s11055-008-9029-y
  6. Li G, Guan Y, Gu Y, et al. Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia. CNS Neurosci Ther. 2023;29(1):202–215. doi: 10.1111/cns.13996
  7. Garner O, Ramey JS, Hanania NA. Management of life-threatening asthma: Severe asthma series. Chest. 2022;162(4): 747–756. doi: 10.1016/j.chest.2022.02.029
  8. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–760. doi: 10.1038/s41551-018-0304-0
  9. Fang Z, Zou D, Xiong W, et al. Dynamic prediction of hypoxemia risk at different time points based on preoperative and intraoperative features: machine learning applications in outpatients undergoing esophagogastroduodenoscopy. Ann Med. 2023;55(1):1156–1167. doi: 10.1080/07853890.2023.2187878
  10. Ohira C, Tomita K, Kaneki M, et al. Effects of low concentrations of ozone gas exposure on percutaneous oxygen saturation and inflammatory responses in a mouse model of Dermatophagoides farinae-induced asthma. Arch Toxicol. 2023;97(12):3151–3162. doi: 10.1007/s00204-023-03593-2
  11. Ura H, Hirata K, Katsuramaki T. Mechanisms of cell death in hypoxic stress. Nihon Geka Gakkai Zasshi. 1999;100(10):656–662.
  12. Urakov A, Urakova N. COVID-19: Cause of death and medications. IP Int J Comp Adv Pharmacol. 2020;5(2):45–48. doi: 10.18231/j.ijcaap.2020.011
  13. Della Rocca Y, Fonticoli L, Rajan TS, et al. Hypoxia: molecular pathophysiological mechanisms in human diseases. J Physiol Biochem. 2022;78(4):739–752. doi: 10.1007/s13105-022-00912-6
  14. Urakov A, Muhutdinov N, Yagudin I, et al. Brain hypoxia caused by respiratory obstruction wich should not be forgotten in COVID-19 disease. Turk J Med Sci. 2022;52(5):1504–1505. doi: 10.55730/1300-0144.5489
  15. Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care. 2020;8(1):95. doi: 10.1186/s40560-020-00505-9
  16. Zhao Y-T, Yuan Y, Tang Y-G, et al. The association between high-oxygen saturation and prognosis for intracerebral hemorrhage. Neurosurg Rev. 2024;47(1):45. doi: 10.1007/s10143-024-02283-6
  17. Duke T, Graham SM, Cherian MN, et al. Oxygen is an essential medicine: a call for international action. Int J Tuberc Lung Dis. 2010;14(11):1362–1368.
  18. English M, Oliwa J, Khalid K, et al. Hospital care for critical illness in low-resource settings: lessons learned during the COVID-19 pandemic. BMJ Glob Health. 2023;8(11):e013407. doi: 10.1136/bmjgh-2023-013407
  19. Revin VV, Gromova NV, Revina ES, et al. Study of the structure, oxygen-transporting functions, and ionic composition of erythrocytes at vascular deiseases. Biomed Res Int. 2015;2015:973973. doi: 10.1155/2015/973973
  20. Gottlieb J, Capetian P, Hamsen U, et al. German S3 guideline: Oxygen therapy in the acute care of adult patients. Respiration. 2022;101(2):214–252. doi: 10.1159/000520294
  21. O’Driscoll BR, Kirton L, Weatherall M, et al. Effect of a lower target oxygen saturation range on the risk of hypoxaemia and elevated NEWS2 scores at a university hospital: a retrospective study. BMJ Open Respir Res. 2024;11(1):e002019. doi: 10.1136/bmjresp-2023-002019
  22. Xu C, Yang F, Wang Q, Gao W. Comparison of high flow nasal therapy with non-invasive ventilation and conventional oxygen therapy for acute hypercapnic respiratory failure: A meta-analysis of randomized controlled trials. Int J Chron Obstruct Pulmon Dis. 2023;18:955–973. doi: 10.2147/COPD.S410958
  23. Ghoshal AG. Hypoxemia and oxygen therapy. J Assoc Chest Physicians. 2020;8(2):42–47. doi: 10.4103/jacp.jacp_44_20
  24. Lopez-Rodriguez AB, Murray CL, Kealy J, et al. Hyperthermia elevates brain temperature and improves behavioural signs in animal models of autism spectrum disorder. Mol Autism. 2023;14(1):43. doi: 10.1186/s13229-023-00569-y
  25. Chen P-S, Chiu W-T, Hsu P-L, et al. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020;27(1):63. doi: 10.1186/s12929-020-00658-7
  26. Watanabe T, Morita M. Asphyxia due to oxygen deficiency by gaseous substances. Forensic Sci Int. 1998;96(1):47–59. doi: 10.1016/s0379-0738(98)00112-1
  27. Urakov A, Urakova N, Kasatkin A, et al. Dynamics of local temperature in the fingertips after the cuff occlusion test: Infrared diagnosis of adaptation reserves to hypoxia and assessment of survivability of victims at massive blood loss. Rev Cardiovasc Med. 2022;23(5):174. doi: 10.31083/j.rcm2305174
  28. Stange VA. Prognosis in general anesthesia. J Am Med Assoc. 1914;62:1132.
  29. Shabanov PD, Urakov A, Urakova NA. Assessment of fetal resistance to hypoxia using the Stange test as an adjunct to Apgar scale assessment of neonatal health status. Medical Academic Journal. 2023;23(3):89–102. EDN: OFZNNV doi: 10.17816/MAJ568979
  30. Henig NR, Pierson DJ. Mechanisms of hypoxemia. Respir Care Clin N Am. 2000;6(4):501–521. doi: 10.1016/s1078-5337(05)70087-3
  31. Maclaren R, Torian S, Kiser T, et al. Therapeutic hypothermia following cardiopulmonary arrest: A systematic review and meta-analysis with trial sequential analysis. J Crit Care Med (Targu Mures). 2023;9(2):64–72. doi: 10.2478/jccm-2023-0015
  32. Elbadawi A, Sedhom R, Baig B, et al. Targeted hypothermia vs targeted normothermia in survivors of cardiac rreast: A systematic review and meta-analysis of randomized trials. Am J Med. 2022;135(5):626–633.e4. doi: 10.1016/j.amjmed.2021.11.014
  33. Arrich J, Schütz N, Oppenauer J, et al. Hypothermia for neuroprotection in adults after cardiac arrest. Cochrane Database Syst Rev. 2023;5(5):CD004128. doi: 10.1002/14651858.CD004128.pub5
  34. Behringer W, Böttiger BW, Biasucci DG, et al. Temperature control after successful resuscitation from cardiac arrest in adults: A joint statement from the European Society for Emergency Medicine and the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol. 2024;41(4):278–281. doi: 10.1097/EJA.0000000000001948
  35. Behringer W, Böttiger BW, Biasucci DG, et al. Temperature control after successful resuscitation from cardiac arrest in adults: a joint statement from the European Society for Emergency Medicine (EUSEM) and the European Society of Anaesthesiology and Intensive Care (ESAIC). Eur J Emerg Med. 2024;31(2):86–89. doi: 10.1097/MEJ.0000000000001106
  36. Awad A, Dillenbeck E, Dankiewicz J, et al. Transnasal evaporative cooling in out-of-hospital cardiac arrest patients to initiate hypothermia — A substudy of the target temperature management 2 (TTM2) Randomized trial. J Clin Med. 2023;12(23):7288. doi: 10.3390/jcm12237288
  37. Urakova N, Urakov A, Shabanov P, Sokolova V. Aerobic brain metabolism, body temperature, oxygen, fetal oxygen supply and fetal movement dynamics as factors in stillbirth and neonatal encephalopathy. Invention review. Azerbaijan Pharmaceutical and Pharmacotherapy Journal. 2023;22(2):105–112. doi: 10.61336/appj/22-2-24
  38. Bon LI, Fliuryk S, Dremza I, et al. Hypoxia of the brain and mechanisms of its development. J Clin Res Rep. 2023;13(4):01–05. doi: 10.31579/2690-1919/311
  39. Shabanov P, Samorodov A, Urakova N, et al. Low fetal resistance to hypoxia as a cause of stillbirth and neonatal encephalopathy. Clin Exp Obstet Gynecol. 2024;51(2):33. doi: 10.31083/j.ceog5102033
  40. Terraneo L, Paroni R, Bianciardi P, et al. Brain adaptation to hypoxia and hyperoxia in mice. Redox Biol. 2017;11:12–20. doi: 10.1016/j.redox.2016.10.018
  41. Bon LI, Bon EI, Maksimovich NYe, Vishnevskaya LI. Adaptation of the brain to hypoxia. J Clin Commun Med. 2023;5(2):540–543. doi: 10.32474/JCCM.2023.05.000208
  42. Radzinsky VE, Urakova NA, Urakov AL, Nikityuk DB. Test Hausknecht as a predictor of Cesarean section and newborn resuscitation. V.F. Snegirev Archives of Obstetrics and Gynecology. 2014;1(2):14–18. EDN: SYSMHP doi: 10.17816/aog35256
  43. Urakov A, Urakova N. A drowning fetus sends adistress signal, which is an indication for a Caesarean section. Indian J Obstet Gynecol Res. 2020;7(4):461–466. doi: 10.18231/j.ijogr.2020.100
  44. Urakov A, Urakova N. Fetal hypoxia: Temperature value for oxygen exchange, resistance to hypoxic damage, and diagnostics using a thermal imager. Indian J Obstet Gynecol Res. 2020;7(2):232–238. doi: 10.18231/j.ijogr.2020.048
  45. Urakov AL, Urakova NA. Modified Stange test gives new gynecological criteria and recommendations for choosing caesarean section childbirth. BioImpacts. 2022;12(5):477–478. doi: 10.34172/bi.2022.23995
  46. Urakov AL, Urakova NA. Time, temperature and life. Advances in Bioresearch. 2021;12(2):246–252. EDN: NUEAAO doi: 10.15515/abr.0976-4585.12.2.246252
  47. Logan SR. The origin and status of the Arrhenius equation. J Chem Educ. 1982;59(4):279–281. doi: 10.1021/ed059p279
  48. Hutchison JS, Ward RE, Lacroix J, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358(23): 2447–2456. doi: 10.1056/NEJMoa0706930
  49. Mackowiak PA, Wasserman SS, Levine MM. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992;268(12):1578–1580.
  50. Ley C, Heath F, Hastie T, et al. Defining usual oral temperature ranges in outpatients using an unsupervised learning algorithm. JAMA Intern Med. 2023;183(10):1128–1135. doi: 10.1001/jamainternmed.2023.4291
  51. Kittrell EM, Satinoff E. Diurnal rhythms of body temperature, drinking and activity over reproductive cycles. Physiol Behav. 1988;42(5):477–484. doi: 10.1016/0031-9384(88)90180-1
  52. Speaker SL, Pfoh ER, Pappas MA, et al. Relationship between oral temperature and bacteremia in hospitalized patients. J Gen Intern Med. 2023;38(12):2742–2748. doi: 10.1007/s11606-023-08168-6
  53. Alagiakrishnan K, Dhami P, Senthilselvan A. Predictors of conversion to dementia in patients with mild cognitive impairment: The role of low body temperature. J Clin Med Res. 2023;15(4): 216–224. doi: 10.14740/jocmr4883
  54. Verduzco-Mendoza A, Mota-Rojas D, Olmos Hernández SA, et al. Traumatic brain injury extending to the striatum alters autonomic thermoregulation and hypothalamic monoamines in recovering rats. Front Neurosci. 2023;17:1304440. doi: 10.3389/fnins.2023.1304440
  55. Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci. 2015;9:320. doi: 10.3389/fnins.2015.00320
  56. Scott BR, Slattery KM, Sculley DV, Dascombe BJ. Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports Med. 2014;44(8):1037–1054. doi: 10.1007/s40279-014-0177-7
  57. Hong JM, Choi ES, Park SY. Selective brain cooling: A new horizon of neuroprotection. Front Neurol. 2022;13:873165. doi: 10.3389/fneur.2022.873165
  58. Jackson TC, Kochanek PM. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Ther Hypothermia Temp Manag. 2019;9(1):13–47. doi: 10.1089/ther.2019.0001
  59. Lunze K, Bloom DE, Jamison DT, Hamer DH. The global burden of neonatal hypothermia: systematic review of a major challenge for newborn survival. BMC Med. 2013;11:24. doi: 10.1186/1741-7015-11-24
  60. Koehler RC, Reyes M, Hopkins CD, et al. Rapid, selective and homogeneous brain cooling with transnasal flow of ambient air for pediatric resuscitation. J Cereb Blood Flow Metab. 2023;43(11): 1842–1856. doi: 10.1177/0271678X231189463
  61. Assis FR, Bigelow MEG, Chava R, et al. Efficacy and safety of transnasal coolstat cooling device to induce and maintain hypothermia. Ther Hypothermia Temp Manag. 2019;9(2):108–117. doi: 10.1089/ther.2018.0014
  62. Choi JH, Pile-Spellman J. Selective brain hypothermia. Handb Clin Neurol. 2018;157:839–852. doi: 10.1016/B978-0-444-64074-1.00052-5
  63. Bhowmick S, Drew KL. Mechanisms of innate preconditioning towards ischemia/anoxia tolerance: Lessons from mammalian hibernators. Cond Med. 2019;2(3):134–141.
  64. Sahdo B, Evans AL, Arnemo JM, et al. Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators? Int J Med Sci. 2013;10(5):508–514. doi: 10.7150/ijms.4476
  65. Cahill T, da Silveira WA, Renaud L, et al. Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish model. Sci Rep. 2023;13(1):918. doi: 10.1038/s41598-022-26976-4
  66. Cerri M, Tinganelli W, Negrini M, et al. Hibernation for space travel: Impact on radioprotection. Life Sci Space Res (Amst). 2016;11:1–9. doi: 10.1016/j.lssr.2016.09.001
  67. Choi JH, Pile-Spellman J, Weinberger J, Poli S. Editorial: Selective brain and heart hypothermia — A path toward targeted organ resuscitation and protection. Front Neurol. 2023;14:1162865. doi: 10.3389/fneur.2023.1162865
  68. Horn M, Diprose WK, Pichardo S, et al. Non-invasive brain temperature measurement in acute ischemic stroke. Front Neurol. 2022;13:889214. doi: 10.3389/fneur.2022.889214
  69. Diprose WK, Rao A, Ghate K, et al. Penumbral cooling in ischemic stroke with intraarterial, intravenous or active conductive head cooling: A thermal modeling study. J Cereb Blood Flow Metab. 2024;44(1):66–76. doi: 10.1177/0271678X231203025
  70. Choi JH, Poli S, Chen M, et al. Selective brain hypothermia in acute ischemic stroke: Reperfusion without reperfusion injury. Front Neurol. 2020;11:594289. doi: 10.3389/fneur.2020.594289
  71. Mrozek S, Vardon F, Geeraerts T. Brain temperature: physio¬logy and pathophysiology after brain injury. Anesthesiol Res Pract. 2012;2012:989487. doi: 10.1155/2012/989487
  72. Fernandez Hernandez S, Barlow B, Pertsovskaya V, Maciel CB. Temperature control after cardiac arrest: A narrative review. Adv Ther. 2023;40(5):2097–2115. doi: 10.1007/s12325-023-02494-1
  73. Chen K, Schenone AL, Gheyath B, et al. Impact of hypothermia on cardiac performance during targeted temperature management after cardiac arrest. Resuscitation. 2019;142:1–7. doi: 10.1016/j.resuscitation.2019.06.276
  74. Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998;29(2):529–534. doi: 10.1161/01.str.29.2.529
  75. Shabanov PD, Zarubina IV. Hypoxia and antihypoxants, focus on brain injury. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):7–16. EDN: NNOOGA doi: 10.17816/RCF1717-16
  76. Urakov AL, Fisher EL, Lebedev AА, Shabanov PD. Aquarium fish and temperature neuropharmacology. Update. Psychopharmacology and biological narcology. 2024;15(1):41–52. EDN: QJVYFF doi: 10.17816/phbn625545
  77. Zarubina IV, Shabanov PD. Significance of individual resistance to hypoxia for the correction of the brain trauma sequelae. Russian journal of physiology. 2003;89(8):919–925. EDN: MPOJNL
  78. Urakov A, Urakova N, Shabanov P, et al. Suffocation in asthma and COVID-19: Supplementation of inhaled corticosteroids with alkaline hydrogen peroxide as an alternative to ECMO. Preprints. 2023:2023070627. doi: 10.20944/preprints202307.0627.v1
  79. Shabanov PD, Fisher EL, Urakov AL. Hydrogen peroxide formulations and methods of their use for blood oxygen saturation. J Med Pharm Allied Sci. 2022;11(6):5489–5493. doi: 10.55522/jmpas.V11I6.4604
  80. Fisher EL, Urakov AL, Samorodov AV, et al. Alkaline hydrogen peroxide solutions: expectorant, pyolytic, mucolytic, haemolytic, oxygen-releasing, and decolorizing effects. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):135–150. EDN: UDPAZJ doi: 10.17816/RCF492316
  81. Urakov A, Urakova N, Reshetnikov A, Rozov R. Local warm alkaline hydrogen peroxide solutions and targeted temperature management improve the treatment of chronic wounds. Azerbaijan Pharmaceutical and Pharmacotherapy Journal. 2024;23(1):65–659. doi: 10.61336/appj/23-1-12

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».