Biological role of miRNA-146a at virus infections. Modern strategy of search of new safe pharmacological agents for treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new preventive and therapeutic strategies for medical treatment viral disease, and СOVID-19.

About the authors

Petr D. Shabanov

Kirov Military-Medical Academy

Author for correspondence.
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

Dr. Med. Sci. (Pharmacology), Professor

Russian Federation, 6 Acad. Lebedes str., Saint Petersburg, 194044

Vladimir I. Vashchenko

Kirov Military-Medical Academy

Email: vaschenko@yandex.ru

Dr. Biol. Sci.

Russian Federation, 6 Acad. Lebedes str., Saint Petersburg, 194044

References

  1. Andreeva OE, Krasil’nikov MA. The phenomenon of RNA interference in oncology: advances, problems and perspectives. Advances in molecular oncology. 2016;3(3):8–15. (In Russ.) doi: 10.17650/2313-805X-2016-3-3-08-15
  2. Loginov VI, Rykov SV, Fridman MV, Braga EA. Methylation of mirna genes and oncogenesis. Biochemistry. 2015;80(2):184–203. (In Russ.) doi: 10.1134/S0006297915020029
  3. Nikitenko NA, Prassolov VS. Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs. Acta Naturae. 2013;5(3): 35–53. (In Russ.) doi: 10.32607/20758251-2013-5-3-35-53
  4. Snezhkina AV, Lukyanova EN, Fedorova MS, et al. Novel genes associated with the development of carotid paragangliomas. Molecular Biology. 2019;53(4):547–559. doi: 10.1134/S0026898419040141
  5. Talipov OA. Rol’ metilirovaniya genov mikrORNK v prognoze lecheniya raka molochnoi zhelezy [dissertation]. Moscow, 2020. 126 p. (In Russ.)
  6. Tiguntsev VV, Ivanova SA, Serebrov VYu, Buhareva MB. Smal noncoding RNA as perspective biomarkers: biogenesis and therapeutic stratigies. Bulletin Siberian Medicine. 2016;15(2):112–126. (In Russ.) doi: 10.20538/1682-0363-2016-2-112-126
  7. Filippova EA, Loginov VI, Pronina IV, et al. A group of hypermethylated miRNA genes in breast cancer and diagnostic potential. Molecular Biology. 2019;53(3):421–429. (In Russ.) doi: 10.1134/S0026898419030054
  8. Abedi F, Rezaee R, Hayes AW, et al. MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents? Cell Cycle. 2021;20(2):143–153. doi: 10.1080/15384101.2020.1867792
  9. Alenquer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses. 2015;7(9):5066–5083. doi: 10.3390/v7092862
  10. Alkhatib G, Combadiere C, Broder C, et al. CC CKR5: A RANTES, MIP-1 alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955
  11. Anastasiadou E, Boccellato F, Vincenti S, et al. Epstein–Barr virus encoded lMP1 downregulates TCl1 oncogene through miR-29b. Oncogene. 2010;29(9):1316–1328. doi: 10.1038/onc.2009.439
  12. Ansari MA, Badrealam KF, Alam A, et al. Recent Nano-based therapeutic intervention of Bioactive Sesquiterpenes: Prospects in cancer therapeutics. Curr Pharm Des. 2020;26(11):1138–1144. doi: 10.2174/1381612826666200116151522
  13. Bandiera S, Pernot S, EI Saghire H, et al. Hepatitis C virus-induced upregulation of microRNA miR-146a-5p in hepatocytes promotes viral infection and deregulates metabolic pathways associated with liver disease pathogenesis. Viral. 2016;90(14):6387–6400. doi: 10.1128/JVI.00619-16
  14. Bartosch B. Hepatitis Band C viruses and hepatocellular carcinoma. Viruses. 2010;2(8):1504–1509. doi: 10.3390/v2081504
  15. Bhattacharya D, Thio CL. Review of hepatitis B therapeutics. Clin Infect Dis. 2010;51(10): 1201–1208. doi: 10.1086/656624
  16. Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27(42): 5643–5647. doi: 10.1038/onc.2008.171
  17. Bhaumik I, Kar RK, Bhunia A, Misra AK. Expedient synthesis of the pentasaccharide repeating unit of the O-antigen of Escherichia coli O86 and its conformational analysis. Glycoconj J. 2016;33(6):887–896. doi: 10.1007/s10719-016-9687-x
  18. Bi Y, Liu G, Yang R. MicroRNAs: Novel regulators during the immune response. Cell Physiol. 2009;218(3):467–472. doi: 10.1002/jcp.21639
  19. Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18(12):1104–1110. doi: 10.1038/gt.2011.50
  20. Bruscella P, Bottini S, Baudesson C, et al. Viruses and miRNAs: More friends than foes. Front Microbiоl. 2017;8:824. doi: 10.3389/fmicb.2017.00824
  21. Buggele WA, Johnson KE, Horvath CM. lnfluenza A virus infection of human respiratory cells induces primary microRNA expression. Biol Chem. 2012;287(37):31027–31040. doi: 10.1074/jbc.M112.387670
  22. Bukhari MMM, Mir I, Idrees M, et al. Role of MicroRNAs in Establishing Latency of Human Immunodeficiency Virus. Crit Rev Eukaryot Gene Expr. 2020;30(4):337–348. doi: 10.1615/CritRevEukaryotGeneExpr.2020034571
  23. Cameron JE, Vin Q, Fewell C, et al. Epstein–Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. Virol. 2008;82(4):1946–1958. doi: 10.1128/JVI.02136-07
  24. Castillo Ramirez JA, Urcuqui-Inchima S. Dengue virus control of type I IFN responses: A history of manipulation and control. Interferon Cytokine Res. 2015;35(6):421–430. doi: 10.1089/jir.2014.0129
  25. Chakraborty C, Sharma AR, Sharma G, Lee S-S. Therapeutic advances of miRNAs: a preclinical and clinical update. J Adv Res. 2020;28:127–138. doi: 10.1016/j.jare.2020.08.012
  26. Chang Y, Cui M, Fu X, et al. MiRNA-155 regulates lymphangiogenesis in natural killer/T-cell lymphoma by targeting BRG1. Cancer Biol Ther. 2019;20(1):31–41. doi: 10.1080/15384047.2018.1504721
  27. Chen F, Li XF, Fu DS, et al. Clinical potential of miRNA-221 as a novel prognostic biomarker for hepatocellular carcinoma. Cancer Biomark. 2017;18(2):209–214. doi: 10.3233/CBM-161671
  28. Coleman CM, Wu L. HIV interactions with monocytes and dendritic cells: Viral latency and reservoirs. Retrovirology. 2009;6(1):51. doi: 10.1186/1742-4690-6-51
  29. Crosbie EJ, Einstein MH, Franceschi S, Kitchener He. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895): 889–899. doi: 10.1016/S0140-6736(13)60022-7
  30. Curtale G, Citarella F, Carissimi C, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood. 2010;115(2):265–273. doi: 10.1182/blood-2009-06-225987
  31. Davis-Dusenbery BN, Hata A. MicroRNA in cancer: The involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer. 2010;1(11):1100–1114. doi: 10.1177/1947601910396213
  32. Ding K, Yu ZH, Yu C, et al. Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek’s disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Veterinary Research. 2020;16(1):23. doi: 10.1186/s12917-020-2239-4
  33. Deng V, Van V, Tan KS, et al. MicroRNA-146a induction during influenza H3N2 virus infection targets and regulates TRAF6 levels in human nasal epithelial cells (hNECs). Exp Cell Res. 2017;352(2): 184–192. doi: 10.1016/j.yexcr.2017.01.011
  34. Dickey LL, Worne CL, Glover JL, et al. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation. 2016;13(1):240. doi: 10.1186/s12974-016-0699-z
  35. Diehl N, Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses. 2013;5(12):3192–3212. doi: 10.3390/v5123192
  36. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667–673. doi: 10.1038/381667a0
  37. Edgar JR. Q&R: What are exosomes, exactly? BMC Biol. 2016;14(1):46. doi: 10.1186/s12915-016-0268-z
  38. EI-Ekiaby N, Hamdi N, Negm M, et al. Repressed induction of interferon-related microRNAs miR-146a and miR-155 in peripheral blood mononuclear cells infected with HCV genotype 4. FEBS Open Biol. 2012;2(1):179–186. doi: 10.1016/j.fob.2012.07.005
  39. Elbahesh H, Cline T, Baranovich T, et al. Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses. J Virol. 2014;88(12):6714–6728. doi: 10.1128/JVI.00530-14
  40. Flisiak R, Halota W, Jaroszewicz J, et al. Recommendations for the treatment of hepatitis B in 2017. C1in Exp Hepatol. 2017;3(2): 35–46. doi: 10.5114/ceh.2017.67626
  41. Fu V, Zhang L, Zhang F, et al. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog. 2017;13(9): e1006611. doi: 10.1371/journal.ppat.1006611
  42. Gangwani MR, Noel RJ, Shah A, et al. Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCl5 expression in astrocytes via PI3K and MAPK signaling pathways. J Neuroinflammation. 2013;10(1):902. doi: 10.1186/1742-2094-10-136
  43. Garchow BG, Bartulos Encinas O, Leung YT, et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 2011;3(10):605–615. doi: 10.1002/emmm.201100171
  44. Głobińska A, Pawełczyk M, Kowalski ML. MicroRNAs and the immune response to respiratory virus infections. Expert Rev Clin Immunol. 2014;10(7):963–971. doi: 10.1586/1744666X.2014.913482
  45. Gong W, Howard OL, Turpin JA, et al. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. Biol Chem. 1998;273(8):4289–4292. doi: 10.1074/jbc.273.8.4289
  46. Gong X, Gong W, Kuhns DB, et al. Monocyte chemotactic protein-2 (MCP-2) uses CCR1 and CCR2B as its functional receptors. Biol Chem. 1997;272(18):11682–11685. doi: 10.1074/jbc.272.18.11682
  47. Grainge CL, Davies DE. Epithelial injury and repair in airways diseases. Chest. 2013;144(6):1906–1912. doi: 10.1378/chest.12-1944
  48. Grayson MH, Holtzman MJ. Chemokine complexity: The case for CCl5. Am Respir Cell Mol Biol. 2006;35(2):143–146. doi: 10.1165/rcmb.f318
  49. Greco O, Kivi N, Qian K, et al. Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One. 2011;6(7): e21646. doi: 10.1371/journal.pone.0021646
  50. Greene W, Kuhne K, Ye F, et al. Molecular biology of KSHV in relation to AIDS-associated oncogenesis. Cancer Treat Res. 2007;133:69–127. doi: 10.1007/978-0-387-46816-7_3
  51. Greening DW, Gopal SK, Xu R, et al. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81. doi: 10.1016/j.semcdb.2015.02.009
  52. Gui S, Chen X, Zhang M, et al. Mir-302c mediates influenza A virus-induced IFN13 expression by targeting NF-kB inducing kinase. FEBS Lett. 2015;589(24):4112–4118. doi: 10.1016/j.febslet.2015.11.011
  53. Guinea-Viniegra J, Jiménez M, Schonthaler HB, et al. Targeting miR-21 to treat psoriasis. Sci Transl Med. 2014;6(225):225re1. doi: 10.1126/scitranslmed.300809
  54. Gunasekharan V, Laimins LA. Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. Virol. 2013;87(10):6037–6043. doi: 10.1128/JVI.00153-13
  55. Guo H, Jiang D, Ma D, et al. Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. Virol. 2009;83(2): 847–858. doi: 10.1128/JVI.02008-08
  56. Guterres A, Henrique de Azeredo Lima C, Miranda RL, et al. What is the potential of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect Gen Evolutin. 2020;85:104417. DOI: org/10.1016/j.meegid.2020.104417
  57. Haasnoot J, Berkhout B. RNAi and mirNAs in infections by mammalian viruses. In: van Rij RP (editor). Antiviral RNAi: Concepts, Methods, and Aplications. Methods in Molecular Biology. 2011;721:23–41. doi: 10.1007/978-1-61779-037-9_2
  58. Hadziyannis SJ. Milestones and perspectives in viral hepatitis B. Liver Int. 2011;31(s1):129–134. doi: 10.1111/j.1478-3231.2010.02406.x
  59. Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478. doi: 10.3389/fgene.2019.00478
  60. Henrich TJ, Kuritzkes DR. HIV-1 entry inhibitors: Recent development and clinical use. Curr Opin Virol. 2013;3(1):51–57. doi: 10.1016/j.coviro.2012.12.002
  61. Hendrix CW, Collier AC, Lederman MM, et al. Safety, pharmacokinetics, and antiviral activity of AMD31 00, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Sundr. 2004. 37(2):1253–1262.
  62. Ongradi J (editor). Herpesviridae. BoD-Books on Demand, Hungary, Semmelweis University: 2016. doi: 10.5772/61923
  63. Hicks JA, Yoo O, Liu H-C. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS One. 2013;8(12): e82054. doi: 10.1371/journal.pone.0082054
  64. Hill JM, Zhao V, Clement C, et al. HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Neuroreport. 2009;20(16):1500–1505. doi: 10.1097/WNR.0b013e3283329c05
  65. Hirasawa K, Kim A, Han H-S, et al. Effect of p38 mitogen-activated protein kinase on the replication of encephalomyocarditis virus. J Virol. 2003;77(10):5649–5656. doi: 10.1128/jvi.77.10.5649-5656.2003
  66. Ho B-C, Yu I-S, Lu L-F, et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 2014;5:3344. doi: 10.1038/ncomms4344
  67. Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-I-dependent type IIFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. Immunol. 2009;183(3):2150–2158. doi: 10.4049/jimmunol.0900707
  68. Hou Z, Zhang J, Han Q, et al. Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a. Sci Rep. 2016;6:26150. doi: 10.1038/srep26150
  69. Hou ZH, Han QJ, Zhang C, et al. miR146a impairs the IFN-induced anti-HBV immune response by down regulating STAT 1 in hepatocytes. Liver Int. 2014;34(1):58–68. doi: 10.1111/liv.12244
  70. Hu Y, Jiang L, Lai W, et al. MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral ribonucleoprotein activity. Gen Virol. 2016;97(1):27–38. doi: 10.1099/jgv.0.000311
  71. Hu Q, Song J, Ding B, et al. miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol Rep. 2018;39(6):3015–3024. doi: 10.3892/or.2018.6391
  72. Huang Q, Chen L, Luo M, et al. HIV-1-induced miR-146a attenuates monocyte migration by targeting CCL5 in human primary macrophages. AIDS Res Hum Retroviruses. 2018;34(7):580–589. doi: 10.1089/AID.2017.0217
  73. Hurwitz SN, Nkosi D, Conlon MM, et al. CD63 regulates Epstein–barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-kB signaling. Virol. 2017;91(5): e02251–e02216. doi: 10.1128/JVI.02251-16
  74. Jaworski E, Narayanan A, Van Ouyne R, et al. Human T-Iymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. Biol Chem. 2014;289(32):22284–22305. doi: 10.1074/jbc.M114.549659
  75. Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip Rev RNA. 2019;10(4): e1533. doi: 10.1002/wrna.1533
  76. Iwamoto N, Butler DCD, Svrzikapa N, et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat Biotechnol. 2017;35(9):845–851. doi: 10.1038/nbt.3948
  77. Izumi KM, Kieft ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Aead Sci USA. 1997;94(23):12592–12597. doi: 10.1073/pnas.94.23.12592
  78. Kalsdorf B, Skolimowska KH, Scriba TJ, et al. Relationship between chemokine receptor expression, chemokine levels and HIV-1 replication in the lungs of persons exposed to Mycobacterium tuberculosis. Eur J Immunol. 2013;43(2):540–549. doi: 10.1002/eji.201242804
  79. Kao JH. Appropriate use of interferon for treatment of chronic hepatitis B. Hepatol Res. 2007;37(s1): S47–S54. doi: 10.1111/j.1872-034X.2007.00105.x
  80. Kanasty R, Dorkin J, Vegas A, et al. Delivery materials for siRNA therapeutics. Nature Mater. 2013;12(11):967–977. doi: 10.1038/nmat3765
  81. Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–864. doi: 10.1038/nrc3166
  82. Kemp V, Laconi A, Cocciolo G, et al. miRNA repertoire and host immune factor regulation upon avian coronavirus infection in eggs. Arch Virol. 2020;165(4):835–843. doi: 10.1007/s00705-020-04527-4
  83. Khan A-A-K, Sany RU, Islam S, Islam K. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front Genet. 2020;11:765. doi: 10.3389/fgene.2020.00765
  84. Khodabandehlou N, Mostafaei S, Etemadi A, et al. Human papilloma virus and breast cancer: The role of inflammation and viral expressed proteins. BMC Cancer. 2019;19(1):61. doi: 10.1186/s12885-019-5286-0
  85. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–385. doi: 10.1038/nrm1644
  86. Kim JK, Kim TS, Basu J, Jo EK. MicroRNA in innate immunity and autophagy during mycobacterial infection. Cell Microbiol. 2017;19(1): e12687. doi: 10.1111/cmi.12687
  87. Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583–588. doi: 10.1038/nature14136
  88. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34. doi: 10.3109/08830185.2010.529976
  89. Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol. 2008;10(7):788–801. doi: 10.1038/ncb1741
  90. Labbaye C, Testa U. The emerging role of MIR-146a in the control of hematopoiesis, immune function and cancer. Hematol Oncol. 2012;5(1):13. doi: 10.1186/1756-8722-5-13
  91. Laxton C, Brady K, Moschos S, et al. Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site. Antimicrob Agents Chemother. 2011;55(7):3105–3114. doi: 10.1128/AAC.00222-11
  92. Lee KY. Enterovirus 71 infection and neurological complications. Korean Pediatr. 2016;59(10):395–401. doi: 10.3345/kjp.2016.59.10.395
  93. Lee V, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419. doi: 10.1038/nature01957
  94. Lenassi M, Cagney G, Liao M, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010;11(1):110–122. doi: 10.1111/j.1600-0854.2009.01006.x
  95. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035
  96. Li H, Xie S, Liu M, et al. The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int Oncol. 2014;45(1):197–208. doi: 10.3892/ijo.2014.2415
  97. Li L, Chen XP, Li YJ. MicroRNA-146a and human disease. Scand Immunol. 2010;71(4):227–231. doi: 10.1111/j.1365-3083.2010.02383.x.
  98. Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics, Proteomics Bioinform. 2012;10(5):246–253. doi: 10.1016/j.gpb.2012.07.005
  99. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–638. doi: 10.1038/nrd4359
  100. Liao Y, Li H, Cao H, et al. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell. 2021;12(3):194–212. doi: 10.1007/s13238-020-00750-6
  101. Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of Toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5(6):446–458. doi: 10.1038/nri1630
  102. Lin S-L, Chiang A, Chang D, Ying S-Y. Loss of miR-146a function in hormone-refractory prostate cancer. RNA. 2008;14(3): 417–424. doi: 10.1261/rna.874808
  103. Lin Y, Bai L, Chen W, Xu S. The NF-kB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010;14(1):45–55. doi: 10.1517/14728220903431069
  104. Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–331. doi: 10.1021/acscentsci.0c00272
  105. Liu Z, Zhang X, Yu Q, He JJ. Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun. 2014;455(3–4):218–222. doi: 10.1016/j.bbrc.2014.10.146
  106. Lu D, Chatterjee S, Xiao K, et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J Mol Cell Cardiol. 2020;148:46–49. doi: 10.1016/j.yjmcc.2020.08.017
  107. Lu L-F, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142(6):914–929. doi: 10.1016/j.cell.2010.08.012
  108. Ma Z, Cao Q, Xiong Y, et al. Interaction between hepatitis B virus and Toll-like receptors: Current status and potential therapeutic use for chronic hepatitis B. Vaccine. 2018;6(1):6. doi: 10.3390/vaccines6010006
  109. Ma VJ, Vang J, Fan XL, et al. Cellular micro RNA let-7c inhibits M1 protein expression ofthe H1N1 influenza A virus in infected human lung epithelial cells. Cell Mol Med. 2012;16(10):2539–2546. doi: 10.1111/j.1582-4934.2012.01572.x
  110. Machlin ES, Sarnow P, Sagan SM. Masking the 5'terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA. 2011;108(8):3193–3198. doi: 10.1073/pnas.1012464108
  111. Mallick B, Ghosh Z, Chakrabarti J. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS ONE. 2009;4(11): e7837. doi: 10.1371/journal.pone.0007837
  112. Mao L, Wu J, Shen L, et al. Enterovirus 71 transmission byexosomes establishes a productive infection in human neuroblastoma cells. Virus Genes. 2016;52(2):189–194. doi: 10.1007/s11262-016-1292-3
  113. Maracy MR, Mostafaei S, Moghoofei M, Mansourian M. Impact of HIV risk factors on survival in Iranian HIV-infected patients: A Bayesian approach to retrospective cohort. HIV AIDS Rev. 2017;16(2):100–106. doi: 10.5114/hivar.2017.68117
  114. Marchi R, Sugita B, Ariana Centa A, et al. The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review. Infect Genet Evol. 2021;91:104832. doi: 10.1016/j.meegid.2021.104832
  115. McMahon BJ. Natural history of chronic hepatitis B. Clinical implications. Medscapej Med. 2008;10(4):91.
  116. Mashouri L, Vousefi H, Aref AR, et al. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1):75. doi: 10.1186/s12943-019-0991-5
  117. Moghoofei M, Mostafaei S, Ashraf-Ganjouei A, et al. HBV reactivation in rheumatic diseases patients under therapy: A meta-analysis. Microb Pathog. 2018;114:436–443. doi: 10.1016/j.micpath.2017.12.014
  118. Moghoofei M, Bokharaei-Salim F, Esghaei M, et al. MicroRNAs 29, 150, 155, 223 level and their relation to viral and immunological markers in HIV-1 infected naive patients. Future Virol. 2018;13(9):637–645. doi: 10.2217/fvl-2018-0055
  119. Moghoofei M, Monavari SH, Mostafaei S, et al. Prevalence of influenza A infection in the M iddle-E ast: A systematic review and meta-analysis. Clin Respir. 2018;12(5):1787–1801. doi: 10.1111/crj.12758
  120. Moghoofei M, Mostafaei S, Nesaei A, et al. Epstein-Barr virus and thyroid cancer: The role of viral expressed proteins. Cell Physiol. 2019;234(4):3790–3799. doi: 10.1002/jcp.27144
  121. Hendrix CW. HIV Antiretroviral Pre-Exposure Prophylaxis: Development Challenges and Pipeline Promise. Clin Pharmacol Ther. 2018;104(6):1082–1097. doi: 10.1002/cpt.1227
  122. Motawi TK, Shaker OG, EI-Maraghy SA, Senousy MA. Serum microRNAs as potential biomarkers for early diagnosis of hepatitis C virus-related hepatocellular carcinoma in Egyptian patients. PLoS One. 2015;10(9): e0137706. doi: 10.1371/journal.pone.0137706
  123. Motsch N, Pfuhl T, Mrazek J, et al. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol. 2007;4(3):131–137. doi: 10.4161/rna.4.3.5206
  124. Nahand JS, Taghizadeh-boroujeni S, Karimzadeh M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. Cell Physiol. 2019;234(10):17064–17099. doi: 10.1002/jcp.28457
  125. Neumann G, Kawaoka V. Transmission of influenza A viruses. Virology. 2015;479:234–246. doi: 10.1016/j.virol.2015.03.009
  126. Ng J, Wu J. Hepatitis B- and hepatitis C-related hepatocellular carcinomas in the United States: Similarities and differences. Hepat Mon. 2012;12(10 HCC): e7635. doi: 10.5812/hepatmon.7635
  127. Nowicki M, Szemraj J, Wierzbowska A, et al. miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 expressions in autologous hematopoietic stem cell transplantation and their impact on engraftment. Eur J Haematol. 2018;100(5):426–435. doi: 10.1111/ejh.13036
  128. O’Connell RM, Baltimore D. Chapter six – microRNAs and hematopoietic cells development. In: Hornstein E. (editor). Current topics in developmental Biology. Academic Press, 2012. P. 145–174. doi: 10.1016/B978-0-12-387038-4.00006-9
  129. O’Connell RM., Rao DS., Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–594. doi: 10.1084/jem.20072108
  130. Ongradi J. Herpesviridae. Semmelweis University, Hungary, 2016.
  131. Park M, Hong J. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cell. 2016;5(2):15. doi: 10.3390/cells5020015
  132. Pathinayake P, Hsu A, Wark P. Innate immunity and immune evasion by enterovirus 71. Viruses. 2015;7(12):6613–6630. doi: 10.3390/v7122961
  133. Pedersen LM, Cheng G, Wieland S, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007;449(7164):919–922. doi: 10.1038/nature06205
  134. Peer D. A daunting task: manipulating leukocyte function with RNAi. Immunol Rev. 2013;253(1):185–197. doi: 10.1111/imr.12044
  135. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202(1):8–32. doi: 10.1111/j.0105-2896.2004.00204.x
  136. Peta E, Cappellesso R, Masi G, et al. Down-regulation of microRNA-146a is associated with high -risk human papillomavirus infection and epidermal growth factor receptor overexpression in penile squamous cell carcinoma. Hum Pathol. 2017;61:33–40. doi: 10.1016/j.humpath.2016.10.019
  137. Peta E, Sinigaglia A, Masi G, et al. HPV16 E6 and E7 upregulate the histone lysine demethylase KDM2B through the c-MVClmiR-146a-5p axys. Oncogene. 2018;37(12):1654–1668. doi: 10.1038/s41388-017-0083-1
  138. Pichler K, Schneider G, Grassmann R. MicroRNA miR-146a and further oncogenesis-related cellular microRNAs are dysregulated in HTLV-1-transformed T lymphocytes. Retrovirology. 2008;5(1):100. doi: 10.1186/1742-4690-5-100
  139. Pillai PS, Molony RD, Martinod K, et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. 2016;352(6284):463–466. doi: 10.1126/science.aaf3926
  140. Pottoo FH, Barkat A, Ansari MA, et al. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol. 2021;69:100–108. doi: 10.1016/j.semcancer.2019.09.017
  141. Pottoo FH, Javed N, Rahman JU, et al. Targeted delivery of miRNA based therapeuticals in the clinical management of glioblastoma multiforme. Semin Cancer Biol. 2021;69:391–398. doi: 10.1016/j.semcancer.2020.04.001
  142. Pu J, Wu S, Xie H, et al. miR-146a inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol. 2017;162(12): 3645–3659. doi: 10.1007/s00705-017-3516-9
  143. Punj V, Matta H, Schamus S, et al. Kaposi’s sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLlP) K13 suppresses CXCR4 expression by upregulating miR-146a. Oncogene. 2010;29(12):1835–1844. doi: 10.1038/onc.2009.460
  144. Qin Z, Peruzzi F, Reiss K, Dai L. Role of host microRNAs in Kaposi’s sarcoma-associated herpesvirus pathogenesis. Viruses. 2014;6(11):4571–4580. doi: 10.3390/v6114571
  145. Quaranta MT, Olivetta E, Sanchez M, et al. miR-146a controls CXCR4 expression in a pathway that involves PlZF and can be used to inhibit HIV-1 infection of CD4+ T lymphocytes. Virology. 2015;478:27–38. doi: 10.1016/j.virol.2015.01.016
  146. Ren JP, Ving RS, Cheng VQ, et al. HCV-induced miR146a controls SOCS1/STAT 3 and cytokine expression in monocytes to promote regulatory T-cell development. Viral Hepat. 2016;23(10): 755–766. doi: 10.1111/jvh.12537
  147. Rom S, Rom I, Passiatore G, et al. CCl8/MCP-2 is a targetfor mir-146a in HIV-1-infected human microglial cells. FASEB J. 2010;24(7):2292–2300. doi: 10.1096/fj.09-143503
  148. Roos M, Rebhan MAE, Lucic M, et al. Short loop-targeting oligoribonucleotides antagonize Lin28 and enable pre-let-7 processing and suppression of cell growth in let-7-deficient cancer cells. Nucleic Acids Res. 2015;43(2): e9. doi: 10.1093/nar/gku1090
  149. Rosato P, Anastasiadou E, Garg N, et al. Differential regulation of miR-21 and miR-146a by Epstein-Barr virus-encoded EBNA2. Leukemia. 2012;26(11):2343–2352. doi: 10.1038/leu.2012.108
  150. Ru J, Sun H, Fan H, et al. MiR-23a facilitates the replication of HSV-1 through the suppression of interferon regulatory factor 1. PLoS One. 2014;9(12): e114021. doi: 10.1371/journal.pone.0114021
  151. Rusca N, Monticelli S. MiR-146a in immunity and disease. Mol Biol lnt. 2011;2011:1–7. doi: 10.4061/2011/437301
  152. Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, et al. microRNAs: Key players in virusassociated hepatocellular carcinoma. Cell Physiol. 2019;234(8):12188–12225. doi: 10.1002/jcp.27956
  153. Sathyanarayanan A, Chandrasekaran KS, Karunagaran D. microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem Biophys Res Commun. 2016;480(4):528–533. doi: 10.1016/j.bbrc.2016.10.054
  154. Sato S, Li K, Kameyama T, et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity. 2015;42(1):123–132. doi: 10.1016/j.immuni.2014.12.016
  155. Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–485. doi: 10.1038/nature09907
  156. Shah A, Singh DP, Buch S, Kumar A. HIV-1 envelope protein gp120 up regulates CCl5 production in astrocytes which can be circumvented by inhibitors of NF-kB pathway. Biochem Biophys Res Commun. 2011;414(1):112–117. doi: 10.1016/j.bbrc.2011.09.033
  157. Sharma N, Verma R, Kumawat KL, et al. miR-146a suppresses cellular immune response duringjapanese encephalitis virusjaOArS982 strain infection in human microglial cells. Neuroinflammation. 2015;12(1):30. doi: 10.1186/s12974-015-0249-0
  158. Sharma S, Javed MN, Pottoo FH, et al. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm Nanotechnol. 2019;7(3):220–233. doi: 10.2174/2211738507666190429103814
  159. Stanford MM, Issekutz TB. The relative activity of CXCR3 and CCR5 Ligands in T lymphocyte migration: Concordant and disparate activities in vitro and in vivo. Leukoc Biol. 2003;74(5):791–799. doi: 10.1189/jlb.1102547
  160. Sugano N, Chen W, Roberts ML, Cooper NR. Epstein-Barr virus binding to CD21 activates the initial viral promoter via NF-kB induction. Exp Med. 1997;186(5):731–737. doi: 10.1084/jem.186.5.731
  161. Sun Q, Zhao X, Liu X, et al. miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. Prostate. 2014;74(16):1613–1621. doi: 10.1002/pros.22878
  162. Suva ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339(6127):1567–1570. doi: 10.1126/science.1230184
  163. Squadrito ML, Etzrodt M, Oe Palma M, Pittet MJ. MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol. 2013;34(7):350–359. doi: 10.1016/j.it.2013.02.003
  164. Svoronos M, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76(13):3666–3670. doi: 10.1158/0008-5472.CAN-16-0359
  165. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappaB-dependent induction of microRNA miR146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103(33):12481–12486. doi: 10.1073/pnas.0605298103
  166. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: Tiny players in a big field. Immunity. 2007;26(2):133–137. doi: 10.1016/j.immuni.2007.02.005
  167. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022
  168. Terrier O, Textoris J, Carron C, et al. Host microRNA molecular signatures associated with human H1N1 and H3N2 influenza A viruses reveal an unanticipated antiviral activity for miR-146a. Gen Virol. 2013;94(5):985–995. doi: 10.1099/vir.0.049528-0
  169. Tomita M, Tanaka V, Mori N. MicroRNA miR-146a is induced by HTlV-1 tax and increases the growth of HTlV-1-infected T-cells. Int Cancer. 2012;130(10):2300–2300. doi: 10.1002/ijc.25115
  170. Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA replication and pathogenesis. Trends Mol Med. 2017;23(1):80–93. doi: 10.1016/j.molmed.2010.11.003
  171. Venuti A, Musarra-Pizzo M, Pennisi R, et al. HSV-1/EGFP stimulates miR-146a expression in a NF-kB-dependent manner in monocytic THP-1 cells. Sci Rep. 2019;9(1):5157. doi: 10.1038/s41598-019-41530-5
  172. Vierling JM. The immunology of hepatitis B. Clin Liver Dis. 2007;11(4):727–759. doi: 10.1016/j.cld.2007.08.001
  173. Wang C, Hai Y, Liu X, et al. Prediction of high-risk types of human papillomaviruses using statistical model of protein “sequence space”. Comput Math Methods Med. 2015;2015:1–9. doi: 10.1155/2015/756345
  174. Wang H, Flach H, Onizawa M, et al. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol. 2014;15(4):393–401. doi: 10.1038/ni.2846
  175. Wang H, Li X, Li T, et al. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oneol Lett. 2019;18(5):5033–5042. doi: 10.3892/ol.2019.10862
  176. Wang S, Zhang X, Ju V, et al. MicroRNA-146a feedback suppresses T cell immune function by targeting Stat1 in patients with chronic hepatitis B. Immunol. 2013;191(1):293–301. doi: 10.4049/jimmunol.1202100
  177. Weitnauer M, Mijosek V, Dalpke A. Control of local immunity by airway epithelial cells. Mucosal Immunol. 2016;9(2):287–298. doi: 10.1038/mi.2015.126
  178. Wilen CB, Tilton JC, Doms RW. HIV: Cell binding and entry. Cold Spring Harb Perspect Med. 2012;2(8): a006866. doi: 10.1101/cshperspect.a006866
  179. Wu S, Jiang Z-V, Sun V-F, et al. Microbiota regulates the TlR7 signaling pathway against respiratory tract influenza A virus infection. Cell Microbiol. 2013;67(4):414–422. doi: 10.1007/s00284-013-0380-z
  180. Xiao C, Ghosh S. NF-kappaB, an evolutionarily conserved mediator of immune and inflammatory responses. Adv Exp Med Biol. 2005;560:41–45. doi: 10.1007/0-387-24180-9_5
  181. Xu B, Huang Y, Niu X, et al. Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1. Prostate. 2015;75(16):1896–1903. doi: 10.1002/pros.23068
  182. Xu B, Wang N, Wang X, et al. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in ap-ERK-dependent manner in castration-resistant prostate cancer. Prostate. 2012;72(11):1171–1178. doi: 10.1002/pros.22466
  183. Yan B, Wang H, Tan Y, Fu W. microRNAs in cardiovascular disease: small molecules but big roles. Curr Top Med Chem. 2019;19(21):1918–1947. doi: 10.2174/1568026619666190808160241
  184. Yan M, Yang X, Wang H, Shao Q. The critical role of histone lysine demethylase KDM2B in cancer. Am Trans Res. 2018;10(8): 2222–2233.
  185. Yan V, Tan KS, Li C, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. Allergy Clin Immunol. 2016;138(1): 276–81.e15. doi: 10.1016/j.jaci.2015.11.016
  186. Yi E-J, Shin Y-J, Kim J-H, et al. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res. 2017;6(1):4–14. doi: 10.7774/cevr.2017.6.1.4
  187. Yin L, Xhang M, He T, Chen S. The expression of miRNA-146a-5p and its mechanism of treating dry eye syndrome. J Clin Lab Anal. 2021;35(1): e23571. doi: 10.1002/jkla.23571
  188. Yu X, Odenthal M, Fries J. Exosomes as miRNA carriers: Formation-function-future. Int Mol Sci. 2016;17(12):2028. doi: 10.3390/ijms17122028
  189. Zeng J, Gupta VK, Jiang Y, et al. Cross-kingdom small RNAs among animals, plants and microbes. Cells. 2019;8(4):371. doi: 10.3390/cells8040371
  190. Zhang F, Sun X, Zhu V, Qin W. Downregulation of miR-146a inhibits influenza A virus replication by enhancing the type I interferon response in vitro and in vivo. Biomed Pharmacother. 2019;111: 740–750. doi: 10.1016/j.biopha.2018.12.103
  191. Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17–24. doi: 10.1016/j.gpb.2015.02.001
  192. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020;92(5):479–490. doi: 10.1002/jmv.25707
  193. Zhang X, Hou J, Lu M. Regulation of hepatitis B virus replication by epigenetic mechanisms and microRNAs. Front Genet. 2013;4:202. doi: 10.3389/fgene.2013.00202
  194. Zhan Y, Liu L, Zhao T, et al. MicroRNAs involved in innate immunity regulation in the sea cucumber: A review. Fish Shellfish Immunol. 2019;95:297–304. doi: 10.1016/j.fsi.2019.10.049
  195. Zhang Z, Zhang C, Li F, et al. Regulation of memory CD8+ T cell differentiation by MicroRNAs. Cell Physiol Biochem. 2018;47(6): 2187–2198. doi: 10.1159/000491532
  196. Zhang Z, Ohto U, Shibata T, et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45(4):737–748. doi: 10.1016/j.immuni.2016.09.011
  197. Zhao J, He S, Minassian A, et al. Recent advances on viral manipulation of NF-kB signaling pathway. Curr Opin Virol. 2015;15: 103–111. doi: 10.1016/j.coviro.2015.08.013.

Copyright (c) 2021 Shabanov P.D., Vashchenko V.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».