Биологическая роль микроРНК-146a при вирусных инфекциях. Современная стратегия поиска новых безопасных фармакологических средств лечения
- Авторы: Шабанов П.Д.1, Ващенко В.И.1
-
Учреждения:
- Военно-медицинская академия им. С.М. Кирова
- Выпуск: Том 19, № 2 (2021)
- Страницы: 145-174
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/RCF/article/view/77302
- DOI: https://doi.org/10.17816/RCF192145-174
- ID: 77302
Цитировать
Аннотация
Клеточные микроРНК (miRNA) были идентифицированы как ключевые игроки в посттранскрипционной регуляции клеточных генов. Кроме того, oни также являются важным регулятором иммунного ответа. В частности, микроРНК-146a действует как важный модулятор функции и дифференцировки клеток врожденного и адаптивного иммунитета. Она связана с различными болезнями, включая рак и вирусные инфекции. Учитывая ее значение в регуляции ключевых клеточных процессов, показано, что вирусы в процессе эволюции нашли пути к нарушению регуляции микроРНК. МикроРНК-146a была идентифицирована в экзосомах (exosomal miR-146a). После высвобождения экзосом из донорских клеток они поглощаются клеткой-реципиентом, и, вероятно, экзосомальные микроРНК-146a способны модулировать противовирусный ответ в клетке-реципиенте, в результате делает эти клетки более восприимчивыми к вирусной инфекции. В этой обзорной статье мы обсуждаем современные данные об уровнях экспрессии микроРНК-146a, генах-мишенях, функциях и роли микроРНК в патогенезе вирусных инфекций, а также перспективы по разработке новых профилактических и терапевтических стратегий для лечения пациентов с вирусными заболеваниями, включая СOVID-19.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Петр Дмитриевич Шабанов
Военно-медицинская академия им. С.М. Кирова
Автор, ответственный за переписку.
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477
доктор медицинских наук, профессор
Россия, 194044, Санкт-Петербург, ул. Акад. Лебедева, д. 6Владимир Иванович Ващенко
Военно-медицинская академия им. С.М. Кирова
Email: vaschenko@yandex.ru
доктор биологических наук
Россия, 194044, Санкт-Петербург, ул. Акад. Лебедева, д. 6Список литературы
- Andreeva OE, Krasil’nikov MA. The phenomenon of RNA interference in oncology: advances, problems and perspectives. Advances in molecular oncology. 2016;3(3):8–15. (In Russ.) doi: 10.17650/2313-805X-2016-3-3-08-15
- Loginov VI, Rykov SV, Fridman MV, Braga EA. Methylation of mirna genes and oncogenesis. Biochemistry. 2015;80(2):184–203. (In Russ.) doi: 10.1134/S0006297915020029
- Nikitenko NA, Prassolov VS. Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs. Acta Naturae. 2013;5(3): 35–53. (In Russ.) doi: 10.32607/20758251-2013-5-3-35-53
- Snezhkina AV, Lukyanova EN, Fedorova MS, et al. Novel genes associated with the development of carotid paragangliomas. Molecular Biology. 2019;53(4):547–559. doi: 10.1134/S0026898419040141
- Talipov OA. Rol’ metilirovaniya genov mikrORNK v prognoze lecheniya raka molochnoi zhelezy [dissertation]. Moscow, 2020. 126 p. (In Russ.)
- Tiguntsev VV, Ivanova SA, Serebrov VYu, Buhareva MB. Smal noncoding RNA as perspective biomarkers: biogenesis and therapeutic stratigies. Bulletin Siberian Medicine. 2016;15(2):112–126. (In Russ.) doi: 10.20538/1682-0363-2016-2-112-126
- Filippova EA, Loginov VI, Pronina IV, et al. A group of hypermethylated miRNA genes in breast cancer and diagnostic potential. Molecular Biology. 2019;53(3):421–429. (In Russ.) doi: 10.1134/S0026898419030054
- Abedi F, Rezaee R, Hayes AW, et al. MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents? Cell Cycle. 2021;20(2):143–153. doi: 10.1080/15384101.2020.1867792
- Alenquer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses. 2015;7(9):5066–5083. doi: 10.3390/v7092862
- Alkhatib G, Combadiere C, Broder C, et al. CC CKR5: A RANTES, MIP-1 alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955
- Anastasiadou E, Boccellato F, Vincenti S, et al. Epstein–Barr virus encoded lMP1 downregulates TCl1 oncogene through miR-29b. Oncogene. 2010;29(9):1316–1328. doi: 10.1038/onc.2009.439
- Ansari MA, Badrealam KF, Alam A, et al. Recent Nano-based therapeutic intervention of Bioactive Sesquiterpenes: Prospects in cancer therapeutics. Curr Pharm Des. 2020;26(11):1138–1144. doi: 10.2174/1381612826666200116151522
- Bandiera S, Pernot S, EI Saghire H, et al. Hepatitis C virus-induced upregulation of microRNA miR-146a-5p in hepatocytes promotes viral infection and deregulates metabolic pathways associated with liver disease pathogenesis. Viral. 2016;90(14):6387–6400. doi: 10.1128/JVI.00619-16
- Bartosch B. Hepatitis Band C viruses and hepatocellular carcinoma. Viruses. 2010;2(8):1504–1509. doi: 10.3390/v2081504
- Bhattacharya D, Thio CL. Review of hepatitis B therapeutics. Clin Infect Dis. 2010;51(10): 1201–1208. doi: 10.1086/656624
- Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27(42): 5643–5647. doi: 10.1038/onc.2008.171
- Bhaumik I, Kar RK, Bhunia A, Misra AK. Expedient synthesis of the pentasaccharide repeating unit of the O-antigen of Escherichia coli O86 and its conformational analysis. Glycoconj J. 2016;33(6):887–896. doi: 10.1007/s10719-016-9687-x
- Bi Y, Liu G, Yang R. MicroRNAs: Novel regulators during the immune response. Cell Physiol. 2009;218(3):467–472. doi: 10.1002/jcp.21639
- Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18(12):1104–1110. doi: 10.1038/gt.2011.50
- Bruscella P, Bottini S, Baudesson C, et al. Viruses and miRNAs: More friends than foes. Front Microbiоl. 2017;8:824. doi: 10.3389/fmicb.2017.00824
- Buggele WA, Johnson KE, Horvath CM. lnfluenza A virus infection of human respiratory cells induces primary microRNA expression. Biol Chem. 2012;287(37):31027–31040. doi: 10.1074/jbc.M112.387670
- Bukhari MMM, Mir I, Idrees M, et al. Role of MicroRNAs in Establishing Latency of Human Immunodeficiency Virus. Crit Rev Eukaryot Gene Expr. 2020;30(4):337–348. doi: 10.1615/CritRevEukaryotGeneExpr.2020034571
- Cameron JE, Vin Q, Fewell C, et al. Epstein–Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. Virol. 2008;82(4):1946–1958. doi: 10.1128/JVI.02136-07
- Castillo Ramirez JA, Urcuqui-Inchima S. Dengue virus control of type I IFN responses: A history of manipulation and control. Interferon Cytokine Res. 2015;35(6):421–430. doi: 10.1089/jir.2014.0129
- Chakraborty C, Sharma AR, Sharma G, Lee S-S. Therapeutic advances of miRNAs: a preclinical and clinical update. J Adv Res. 2020;28:127–138. doi: 10.1016/j.jare.2020.08.012
- Chang Y, Cui M, Fu X, et al. MiRNA-155 regulates lymphangiogenesis in natural killer/T-cell lymphoma by targeting BRG1. Cancer Biol Ther. 2019;20(1):31–41. doi: 10.1080/15384047.2018.1504721
- Chen F, Li XF, Fu DS, et al. Clinical potential of miRNA-221 as a novel prognostic biomarker for hepatocellular carcinoma. Cancer Biomark. 2017;18(2):209–214. doi: 10.3233/CBM-161671
- Coleman CM, Wu L. HIV interactions with monocytes and dendritic cells: Viral latency and reservoirs. Retrovirology. 2009;6(1):51. doi: 10.1186/1742-4690-6-51
- Crosbie EJ, Einstein MH, Franceschi S, Kitchener He. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895): 889–899. doi: 10.1016/S0140-6736(13)60022-7
- Curtale G, Citarella F, Carissimi C, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood. 2010;115(2):265–273. doi: 10.1182/blood-2009-06-225987
- Davis-Dusenbery BN, Hata A. MicroRNA in cancer: The involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer. 2010;1(11):1100–1114. doi: 10.1177/1947601910396213
- Ding K, Yu ZH, Yu C, et al. Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek’s disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Veterinary Research. 2020;16(1):23. doi: 10.1186/s12917-020-2239-4
- Deng V, Van V, Tan KS, et al. MicroRNA-146a induction during influenza H3N2 virus infection targets and regulates TRAF6 levels in human nasal epithelial cells (hNECs). Exp Cell Res. 2017;352(2): 184–192. doi: 10.1016/j.yexcr.2017.01.011
- Dickey LL, Worne CL, Glover JL, et al. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation. 2016;13(1):240. doi: 10.1186/s12974-016-0699-z
- Diehl N, Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses. 2013;5(12):3192–3212. doi: 10.3390/v5123192
- Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667–673. doi: 10.1038/381667a0
- Edgar JR. Q&R: What are exosomes, exactly? BMC Biol. 2016;14(1):46. doi: 10.1186/s12915-016-0268-z
- EI-Ekiaby N, Hamdi N, Negm M, et al. Repressed induction of interferon-related microRNAs miR-146a and miR-155 in peripheral blood mononuclear cells infected with HCV genotype 4. FEBS Open Biol. 2012;2(1):179–186. doi: 10.1016/j.fob.2012.07.005
- Elbahesh H, Cline T, Baranovich T, et al. Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses. J Virol. 2014;88(12):6714–6728. doi: 10.1128/JVI.00530-14
- Flisiak R, Halota W, Jaroszewicz J, et al. Recommendations for the treatment of hepatitis B in 2017. C1in Exp Hepatol. 2017;3(2): 35–46. doi: 10.5114/ceh.2017.67626
- Fu V, Zhang L, Zhang F, et al. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog. 2017;13(9): e1006611. doi: 10.1371/journal.ppat.1006611
- Gangwani MR, Noel RJ, Shah A, et al. Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCl5 expression in astrocytes via PI3K and MAPK signaling pathways. J Neuroinflammation. 2013;10(1):902. doi: 10.1186/1742-2094-10-136
- Garchow BG, Bartulos Encinas O, Leung YT, et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 2011;3(10):605–615. doi: 10.1002/emmm.201100171
- Głobińska A, Pawełczyk M, Kowalski ML. MicroRNAs and the immune response to respiratory virus infections. Expert Rev Clin Immunol. 2014;10(7):963–971. doi: 10.1586/1744666X.2014.913482
- Gong W, Howard OL, Turpin JA, et al. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. Biol Chem. 1998;273(8):4289–4292. doi: 10.1074/jbc.273.8.4289
- Gong X, Gong W, Kuhns DB, et al. Monocyte chemotactic protein-2 (MCP-2) uses CCR1 and CCR2B as its functional receptors. Biol Chem. 1997;272(18):11682–11685. doi: 10.1074/jbc.272.18.11682
- Grainge CL, Davies DE. Epithelial injury and repair in airways diseases. Chest. 2013;144(6):1906–1912. doi: 10.1378/chest.12-1944
- Grayson MH, Holtzman MJ. Chemokine complexity: The case for CCl5. Am Respir Cell Mol Biol. 2006;35(2):143–146. doi: 10.1165/rcmb.f318
- Greco O, Kivi N, Qian K, et al. Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One. 2011;6(7): e21646. doi: 10.1371/journal.pone.0021646
- Greene W, Kuhne K, Ye F, et al. Molecular biology of KSHV in relation to AIDS-associated oncogenesis. Cancer Treat Res. 2007;133:69–127. doi: 10.1007/978-0-387-46816-7_3
- Greening DW, Gopal SK, Xu R, et al. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81. doi: 10.1016/j.semcdb.2015.02.009
- Gui S, Chen X, Zhang M, et al. Mir-302c mediates influenza A virus-induced IFN13 expression by targeting NF-kB inducing kinase. FEBS Lett. 2015;589(24):4112–4118. doi: 10.1016/j.febslet.2015.11.011
- Guinea-Viniegra J, Jiménez M, Schonthaler HB, et al. Targeting miR-21 to treat psoriasis. Sci Transl Med. 2014;6(225):225re1. doi: 10.1126/scitranslmed.300809
- Gunasekharan V, Laimins LA. Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. Virol. 2013;87(10):6037–6043. doi: 10.1128/JVI.00153-13
- Guo H, Jiang D, Ma D, et al. Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. Virol. 2009;83(2): 847–858. doi: 10.1128/JVI.02008-08
- Guterres A, Henrique de Azeredo Lima C, Miranda RL, et al. What is the potential of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect Gen Evolutin. 2020;85:104417. DOI: org/10.1016/j.meegid.2020.104417
- Haasnoot J, Berkhout B. RNAi and mirNAs in infections by mammalian viruses. In: van Rij RP (editor). Antiviral RNAi: Concepts, Methods, and Aplications. Methods in Molecular Biology. 2011;721:23–41. doi: 10.1007/978-1-61779-037-9_2
- Hadziyannis SJ. Milestones and perspectives in viral hepatitis B. Liver Int. 2011;31(s1):129–134. doi: 10.1111/j.1478-3231.2010.02406.x
- Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478. doi: 10.3389/fgene.2019.00478
- Henrich TJ, Kuritzkes DR. HIV-1 entry inhibitors: Recent development and clinical use. Curr Opin Virol. 2013;3(1):51–57. doi: 10.1016/j.coviro.2012.12.002
- Hendrix CW, Collier AC, Lederman MM, et al. Safety, pharmacokinetics, and antiviral activity of AMD31 00, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Sundr. 2004. 37(2):1253–1262.
- Ongradi J (editor). Herpesviridae. BoD-Books on Demand, Hungary, Semmelweis University: 2016. doi: 10.5772/61923
- Hicks JA, Yoo O, Liu H-C. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS One. 2013;8(12): e82054. doi: 10.1371/journal.pone.0082054
- Hill JM, Zhao V, Clement C, et al. HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Neuroreport. 2009;20(16):1500–1505. doi: 10.1097/WNR.0b013e3283329c05
- Hirasawa K, Kim A, Han H-S, et al. Effect of p38 mitogen-activated protein kinase on the replication of encephalomyocarditis virus. J Virol. 2003;77(10):5649–5656. doi: 10.1128/jvi.77.10.5649-5656.2003
- Ho B-C, Yu I-S, Lu L-F, et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 2014;5:3344. doi: 10.1038/ncomms4344
- Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-I-dependent type IIFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. Immunol. 2009;183(3):2150–2158. doi: 10.4049/jimmunol.0900707
- Hou Z, Zhang J, Han Q, et al. Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a. Sci Rep. 2016;6:26150. doi: 10.1038/srep26150
- Hou ZH, Han QJ, Zhang C, et al. miR146a impairs the IFN-induced anti-HBV immune response by down regulating STAT 1 in hepatocytes. Liver Int. 2014;34(1):58–68. doi: 10.1111/liv.12244
- Hu Y, Jiang L, Lai W, et al. MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral ribonucleoprotein activity. Gen Virol. 2016;97(1):27–38. doi: 10.1099/jgv.0.000311
- Hu Q, Song J, Ding B, et al. miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol Rep. 2018;39(6):3015–3024. doi: 10.3892/or.2018.6391
- Huang Q, Chen L, Luo M, et al. HIV-1-induced miR-146a attenuates monocyte migration by targeting CCL5 in human primary macrophages. AIDS Res Hum Retroviruses. 2018;34(7):580–589. doi: 10.1089/AID.2017.0217
- Hurwitz SN, Nkosi D, Conlon MM, et al. CD63 regulates Epstein–barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-kB signaling. Virol. 2017;91(5): e02251–e02216. doi: 10.1128/JVI.02251-16
- Jaworski E, Narayanan A, Van Ouyne R, et al. Human T-Iymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. Biol Chem. 2014;289(32):22284–22305. doi: 10.1074/jbc.M114.549659
- Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip Rev RNA. 2019;10(4): e1533. doi: 10.1002/wrna.1533
- Iwamoto N, Butler DCD, Svrzikapa N, et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat Biotechnol. 2017;35(9):845–851. doi: 10.1038/nbt.3948
- Izumi KM, Kieft ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Aead Sci USA. 1997;94(23):12592–12597. doi: 10.1073/pnas.94.23.12592
- Kalsdorf B, Skolimowska KH, Scriba TJ, et al. Relationship between chemokine receptor expression, chemokine levels and HIV-1 replication in the lungs of persons exposed to Mycobacterium tuberculosis. Eur J Immunol. 2013;43(2):540–549. doi: 10.1002/eji.201242804
- Kao JH. Appropriate use of interferon for treatment of chronic hepatitis B. Hepatol Res. 2007;37(s1): S47–S54. doi: 10.1111/j.1872-034X.2007.00105.x
- Kanasty R, Dorkin J, Vegas A, et al. Delivery materials for siRNA therapeutics. Nature Mater. 2013;12(11):967–977. doi: 10.1038/nmat3765
- Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–864. doi: 10.1038/nrc3166
- Kemp V, Laconi A, Cocciolo G, et al. miRNA repertoire and host immune factor regulation upon avian coronavirus infection in eggs. Arch Virol. 2020;165(4):835–843. doi: 10.1007/s00705-020-04527-4
- Khan A-A-K, Sany RU, Islam S, Islam K. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front Genet. 2020;11:765. doi: 10.3389/fgene.2020.00765
- Khodabandehlou N, Mostafaei S, Etemadi A, et al. Human papilloma virus and breast cancer: The role of inflammation and viral expressed proteins. BMC Cancer. 2019;19(1):61. doi: 10.1186/s12885-019-5286-0
- Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–385. doi: 10.1038/nrm1644
- Kim JK, Kim TS, Basu J, Jo EK. MicroRNA in innate immunity and autophagy during mycobacterial infection. Cell Microbiol. 2017;19(1): e12687. doi: 10.1111/cmi.12687
- Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583–588. doi: 10.1038/nature14136
- Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34. doi: 10.3109/08830185.2010.529976
- Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol. 2008;10(7):788–801. doi: 10.1038/ncb1741
- Labbaye C, Testa U. The emerging role of MIR-146a in the control of hematopoiesis, immune function and cancer. Hematol Oncol. 2012;5(1):13. doi: 10.1186/1756-8722-5-13
- Laxton C, Brady K, Moschos S, et al. Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site. Antimicrob Agents Chemother. 2011;55(7):3105–3114. doi: 10.1128/AAC.00222-11
- Lee KY. Enterovirus 71 infection and neurological complications. Korean Pediatr. 2016;59(10):395–401. doi: 10.3345/kjp.2016.59.10.395
- Lee V, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419. doi: 10.1038/nature01957
- Lenassi M, Cagney G, Liao M, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010;11(1):110–122. doi: 10.1111/j.1600-0854.2009.01006.x
- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035
- Li H, Xie S, Liu M, et al. The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int Oncol. 2014;45(1):197–208. doi: 10.3892/ijo.2014.2415
- Li L, Chen XP, Li YJ. MicroRNA-146a and human disease. Scand Immunol. 2010;71(4):227–231. doi: 10.1111/j.1365-3083.2010.02383.x.
- Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics, Proteomics Bioinform. 2012;10(5):246–253. doi: 10.1016/j.gpb.2012.07.005
- Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–638. doi: 10.1038/nrd4359
- Liao Y, Li H, Cao H, et al. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell. 2021;12(3):194–212. doi: 10.1007/s13238-020-00750-6
- Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of Toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5(6):446–458. doi: 10.1038/nri1630
- Lin S-L, Chiang A, Chang D, Ying S-Y. Loss of miR-146a function in hormone-refractory prostate cancer. RNA. 2008;14(3): 417–424. doi: 10.1261/rna.874808
- Lin Y, Bai L, Chen W, Xu S. The NF-kB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010;14(1):45–55. doi: 10.1517/14728220903431069
- Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–331. doi: 10.1021/acscentsci.0c00272
- Liu Z, Zhang X, Yu Q, He JJ. Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun. 2014;455(3–4):218–222. doi: 10.1016/j.bbrc.2014.10.146
- Lu D, Chatterjee S, Xiao K, et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J Mol Cell Cardiol. 2020;148:46–49. doi: 10.1016/j.yjmcc.2020.08.017
- Lu L-F, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142(6):914–929. doi: 10.1016/j.cell.2010.08.012
- Ma Z, Cao Q, Xiong Y, et al. Interaction between hepatitis B virus and Toll-like receptors: Current status and potential therapeutic use for chronic hepatitis B. Vaccine. 2018;6(1):6. doi: 10.3390/vaccines6010006
- Ma VJ, Vang J, Fan XL, et al. Cellular micro RNA let-7c inhibits M1 protein expression ofthe H1N1 influenza A virus in infected human lung epithelial cells. Cell Mol Med. 2012;16(10):2539–2546. doi: 10.1111/j.1582-4934.2012.01572.x
- Machlin ES, Sarnow P, Sagan SM. Masking the 5'terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA. 2011;108(8):3193–3198. doi: 10.1073/pnas.1012464108
- Mallick B, Ghosh Z, Chakrabarti J. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS ONE. 2009;4(11): e7837. doi: 10.1371/journal.pone.0007837
- Mao L, Wu J, Shen L, et al. Enterovirus 71 transmission byexosomes establishes a productive infection in human neuroblastoma cells. Virus Genes. 2016;52(2):189–194. doi: 10.1007/s11262-016-1292-3
- Maracy MR, Mostafaei S, Moghoofei M, Mansourian M. Impact of HIV risk factors on survival in Iranian HIV-infected patients: A Bayesian approach to retrospective cohort. HIV AIDS Rev. 2017;16(2):100–106. doi: 10.5114/hivar.2017.68117
- Marchi R, Sugita B, Ariana Centa A, et al. The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review. Infect Genet Evol. 2021;91:104832. doi: 10.1016/j.meegid.2021.104832
- McMahon BJ. Natural history of chronic hepatitis B. Clinical implications. Medscapej Med. 2008;10(4):91.
- Mashouri L, Vousefi H, Aref AR, et al. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1):75. doi: 10.1186/s12943-019-0991-5
- Moghoofei M, Mostafaei S, Ashraf-Ganjouei A, et al. HBV reactivation in rheumatic diseases patients under therapy: A meta-analysis. Microb Pathog. 2018;114:436–443. doi: 10.1016/j.micpath.2017.12.014
- Moghoofei M, Bokharaei-Salim F, Esghaei M, et al. MicroRNAs 29, 150, 155, 223 level and their relation to viral and immunological markers in HIV-1 infected naive patients. Future Virol. 2018;13(9):637–645. doi: 10.2217/fvl-2018-0055
- Moghoofei M, Monavari SH, Mostafaei S, et al. Prevalence of influenza A infection in the M iddle-E ast: A systematic review and meta-analysis. Clin Respir. 2018;12(5):1787–1801. doi: 10.1111/crj.12758
- Moghoofei M, Mostafaei S, Nesaei A, et al. Epstein-Barr virus and thyroid cancer: The role of viral expressed proteins. Cell Physiol. 2019;234(4):3790–3799. doi: 10.1002/jcp.27144
- Hendrix CW. HIV Antiretroviral Pre-Exposure Prophylaxis: Development Challenges and Pipeline Promise. Clin Pharmacol Ther. 2018;104(6):1082–1097. doi: 10.1002/cpt.1227
- Motawi TK, Shaker OG, EI-Maraghy SA, Senousy MA. Serum microRNAs as potential biomarkers for early diagnosis of hepatitis C virus-related hepatocellular carcinoma in Egyptian patients. PLoS One. 2015;10(9): e0137706. doi: 10.1371/journal.pone.0137706
- Motsch N, Pfuhl T, Mrazek J, et al. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol. 2007;4(3):131–137. doi: 10.4161/rna.4.3.5206
- Nahand JS, Taghizadeh-boroujeni S, Karimzadeh M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. Cell Physiol. 2019;234(10):17064–17099. doi: 10.1002/jcp.28457
- Neumann G, Kawaoka V. Transmission of influenza A viruses. Virology. 2015;479:234–246. doi: 10.1016/j.virol.2015.03.009
- Ng J, Wu J. Hepatitis B- and hepatitis C-related hepatocellular carcinomas in the United States: Similarities and differences. Hepat Mon. 2012;12(10 HCC): e7635. doi: 10.5812/hepatmon.7635
- Nowicki M, Szemraj J, Wierzbowska A, et al. miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 expressions in autologous hematopoietic stem cell transplantation and their impact on engraftment. Eur J Haematol. 2018;100(5):426–435. doi: 10.1111/ejh.13036
- O’Connell RM, Baltimore D. Chapter six – microRNAs and hematopoietic cells development. In: Hornstein E. (editor). Current topics in developmental Biology. Academic Press, 2012. P. 145–174. doi: 10.1016/B978-0-12-387038-4.00006-9
- O’Connell RM., Rao DS., Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–594. doi: 10.1084/jem.20072108
- Ongradi J. Herpesviridae. Semmelweis University, Hungary, 2016.
- Park M, Hong J. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cell. 2016;5(2):15. doi: 10.3390/cells5020015
- Pathinayake P, Hsu A, Wark P. Innate immunity and immune evasion by enterovirus 71. Viruses. 2015;7(12):6613–6630. doi: 10.3390/v7122961
- Pedersen LM, Cheng G, Wieland S, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007;449(7164):919–922. doi: 10.1038/nature06205
- Peer D. A daunting task: manipulating leukocyte function with RNAi. Immunol Rev. 2013;253(1):185–197. doi: 10.1111/imr.12044
- Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202(1):8–32. doi: 10.1111/j.0105-2896.2004.00204.x
- Peta E, Cappellesso R, Masi G, et al. Down-regulation of microRNA-146a is associated with high -risk human papillomavirus infection and epidermal growth factor receptor overexpression in penile squamous cell carcinoma. Hum Pathol. 2017;61:33–40. doi: 10.1016/j.humpath.2016.10.019
- Peta E, Sinigaglia A, Masi G, et al. HPV16 E6 and E7 upregulate the histone lysine demethylase KDM2B through the c-MVClmiR-146a-5p axys. Oncogene. 2018;37(12):1654–1668. doi: 10.1038/s41388-017-0083-1
- Pichler K, Schneider G, Grassmann R. MicroRNA miR-146a and further oncogenesis-related cellular microRNAs are dysregulated in HTLV-1-transformed T lymphocytes. Retrovirology. 2008;5(1):100. doi: 10.1186/1742-4690-5-100
- Pillai PS, Molony RD, Martinod K, et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. 2016;352(6284):463–466. doi: 10.1126/science.aaf3926
- Pottoo FH, Barkat A, Ansari MA, et al. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol. 2021;69:100–108. doi: 10.1016/j.semcancer.2019.09.017
- Pottoo FH, Javed N, Rahman JU, et al. Targeted delivery of miRNA based therapeuticals in the clinical management of glioblastoma multiforme. Semin Cancer Biol. 2021;69:391–398. doi: 10.1016/j.semcancer.2020.04.001
- Pu J, Wu S, Xie H, et al. miR-146a inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol. 2017;162(12): 3645–3659. doi: 10.1007/s00705-017-3516-9
- Punj V, Matta H, Schamus S, et al. Kaposi’s sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLlP) K13 suppresses CXCR4 expression by upregulating miR-146a. Oncogene. 2010;29(12):1835–1844. doi: 10.1038/onc.2009.460
- Qin Z, Peruzzi F, Reiss K, Dai L. Role of host microRNAs in Kaposi’s sarcoma-associated herpesvirus pathogenesis. Viruses. 2014;6(11):4571–4580. doi: 10.3390/v6114571
- Quaranta MT, Olivetta E, Sanchez M, et al. miR-146a controls CXCR4 expression in a pathway that involves PlZF and can be used to inhibit HIV-1 infection of CD4+ T lymphocytes. Virology. 2015;478:27–38. doi: 10.1016/j.virol.2015.01.016
- Ren JP, Ving RS, Cheng VQ, et al. HCV-induced miR146a controls SOCS1/STAT 3 and cytokine expression in monocytes to promote regulatory T-cell development. Viral Hepat. 2016;23(10): 755–766. doi: 10.1111/jvh.12537
- Rom S, Rom I, Passiatore G, et al. CCl8/MCP-2 is a targetfor mir-146a in HIV-1-infected human microglial cells. FASEB J. 2010;24(7):2292–2300. doi: 10.1096/fj.09-143503
- Roos M, Rebhan MAE, Lucic M, et al. Short loop-targeting oligoribonucleotides antagonize Lin28 and enable pre-let-7 processing and suppression of cell growth in let-7-deficient cancer cells. Nucleic Acids Res. 2015;43(2): e9. doi: 10.1093/nar/gku1090
- Rosato P, Anastasiadou E, Garg N, et al. Differential regulation of miR-21 and miR-146a by Epstein-Barr virus-encoded EBNA2. Leukemia. 2012;26(11):2343–2352. doi: 10.1038/leu.2012.108
- Ru J, Sun H, Fan H, et al. MiR-23a facilitates the replication of HSV-1 through the suppression of interferon regulatory factor 1. PLoS One. 2014;9(12): e114021. doi: 10.1371/journal.pone.0114021
- Rusca N, Monticelli S. MiR-146a in immunity and disease. Mol Biol lnt. 2011;2011:1–7. doi: 10.4061/2011/437301
- Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, et al. microRNAs: Key players in virusassociated hepatocellular carcinoma. Cell Physiol. 2019;234(8):12188–12225. doi: 10.1002/jcp.27956
- Sathyanarayanan A, Chandrasekaran KS, Karunagaran D. microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem Biophys Res Commun. 2016;480(4):528–533. doi: 10.1016/j.bbrc.2016.10.054
- Sato S, Li K, Kameyama T, et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity. 2015;42(1):123–132. doi: 10.1016/j.immuni.2014.12.016
- Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–485. doi: 10.1038/nature09907
- Shah A, Singh DP, Buch S, Kumar A. HIV-1 envelope protein gp120 up regulates CCl5 production in astrocytes which can be circumvented by inhibitors of NF-kB pathway. Biochem Biophys Res Commun. 2011;414(1):112–117. doi: 10.1016/j.bbrc.2011.09.033
- Sharma N, Verma R, Kumawat KL, et al. miR-146a suppresses cellular immune response duringjapanese encephalitis virusjaOArS982 strain infection in human microglial cells. Neuroinflammation. 2015;12(1):30. doi: 10.1186/s12974-015-0249-0
- Sharma S, Javed MN, Pottoo FH, et al. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm Nanotechnol. 2019;7(3):220–233. doi: 10.2174/2211738507666190429103814
- Stanford MM, Issekutz TB. The relative activity of CXCR3 and CCR5 Ligands in T lymphocyte migration: Concordant and disparate activities in vitro and in vivo. Leukoc Biol. 2003;74(5):791–799. doi: 10.1189/jlb.1102547
- Sugano N, Chen W, Roberts ML, Cooper NR. Epstein-Barr virus binding to CD21 activates the initial viral promoter via NF-kB induction. Exp Med. 1997;186(5):731–737. doi: 10.1084/jem.186.5.731
- Sun Q, Zhao X, Liu X, et al. miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. Prostate. 2014;74(16):1613–1621. doi: 10.1002/pros.22878
- Suva ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339(6127):1567–1570. doi: 10.1126/science.1230184
- Squadrito ML, Etzrodt M, Oe Palma M, Pittet MJ. MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol. 2013;34(7):350–359. doi: 10.1016/j.it.2013.02.003
- Svoronos M, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76(13):3666–3670. doi: 10.1158/0008-5472.CAN-16-0359
- Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappaB-dependent induction of microRNA miR146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103(33):12481–12486. doi: 10.1073/pnas.0605298103
- Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: Tiny players in a big field. Immunity. 2007;26(2):133–137. doi: 10.1016/j.immuni.2007.02.005
- Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022
- Terrier O, Textoris J, Carron C, et al. Host microRNA molecular signatures associated with human H1N1 and H3N2 influenza A viruses reveal an unanticipated antiviral activity for miR-146a. Gen Virol. 2013;94(5):985–995. doi: 10.1099/vir.0.049528-0
- Tomita M, Tanaka V, Mori N. MicroRNA miR-146a is induced by HTlV-1 tax and increases the growth of HTlV-1-infected T-cells. Int Cancer. 2012;130(10):2300–2300. doi: 10.1002/ijc.25115
- Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA replication and pathogenesis. Trends Mol Med. 2017;23(1):80–93. doi: 10.1016/j.molmed.2010.11.003
- Venuti A, Musarra-Pizzo M, Pennisi R, et al. HSV-1/EGFP stimulates miR-146a expression in a NF-kB-dependent manner in monocytic THP-1 cells. Sci Rep. 2019;9(1):5157. doi: 10.1038/s41598-019-41530-5
- Vierling JM. The immunology of hepatitis B. Clin Liver Dis. 2007;11(4):727–759. doi: 10.1016/j.cld.2007.08.001
- Wang C, Hai Y, Liu X, et al. Prediction of high-risk types of human papillomaviruses using statistical model of protein “sequence space”. Comput Math Methods Med. 2015;2015:1–9. doi: 10.1155/2015/756345
- Wang H, Flach H, Onizawa M, et al. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol. 2014;15(4):393–401. doi: 10.1038/ni.2846
- Wang H, Li X, Li T, et al. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oneol Lett. 2019;18(5):5033–5042. doi: 10.3892/ol.2019.10862
- Wang S, Zhang X, Ju V, et al. MicroRNA-146a feedback suppresses T cell immune function by targeting Stat1 in patients with chronic hepatitis B. Immunol. 2013;191(1):293–301. doi: 10.4049/jimmunol.1202100
- Weitnauer M, Mijosek V, Dalpke A. Control of local immunity by airway epithelial cells. Mucosal Immunol. 2016;9(2):287–298. doi: 10.1038/mi.2015.126
- Wilen CB, Tilton JC, Doms RW. HIV: Cell binding and entry. Cold Spring Harb Perspect Med. 2012;2(8): a006866. doi: 10.1101/cshperspect.a006866
- Wu S, Jiang Z-V, Sun V-F, et al. Microbiota regulates the TlR7 signaling pathway against respiratory tract influenza A virus infection. Cell Microbiol. 2013;67(4):414–422. doi: 10.1007/s00284-013-0380-z
- Xiao C, Ghosh S. NF-kappaB, an evolutionarily conserved mediator of immune and inflammatory responses. Adv Exp Med Biol. 2005;560:41–45. doi: 10.1007/0-387-24180-9_5
- Xu B, Huang Y, Niu X, et al. Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1. Prostate. 2015;75(16):1896–1903. doi: 10.1002/pros.23068
- Xu B, Wang N, Wang X, et al. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in ap-ERK-dependent manner in castration-resistant prostate cancer. Prostate. 2012;72(11):1171–1178. doi: 10.1002/pros.22466
- Yan B, Wang H, Tan Y, Fu W. microRNAs in cardiovascular disease: small molecules but big roles. Curr Top Med Chem. 2019;19(21):1918–1947. doi: 10.2174/1568026619666190808160241
- Yan M, Yang X, Wang H, Shao Q. The critical role of histone lysine demethylase KDM2B in cancer. Am Trans Res. 2018;10(8): 2222–2233.
- Yan V, Tan KS, Li C, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. Allergy Clin Immunol. 2016;138(1): 276–81.e15. doi: 10.1016/j.jaci.2015.11.016
- Yi E-J, Shin Y-J, Kim J-H, et al. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res. 2017;6(1):4–14. doi: 10.7774/cevr.2017.6.1.4
- Yin L, Xhang M, He T, Chen S. The expression of miRNA-146a-5p and its mechanism of treating dry eye syndrome. J Clin Lab Anal. 2021;35(1): e23571. doi: 10.1002/jkla.23571
- Yu X, Odenthal M, Fries J. Exosomes as miRNA carriers: Formation-function-future. Int Mol Sci. 2016;17(12):2028. doi: 10.3390/ijms17122028
- Zeng J, Gupta VK, Jiang Y, et al. Cross-kingdom small RNAs among animals, plants and microbes. Cells. 2019;8(4):371. doi: 10.3390/cells8040371
- Zhang F, Sun X, Zhu V, Qin W. Downregulation of miR-146a inhibits influenza A virus replication by enhancing the type I interferon response in vitro and in vivo. Biomed Pharmacother. 2019;111: 740–750. doi: 10.1016/j.biopha.2018.12.103
- Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17–24. doi: 10.1016/j.gpb.2015.02.001
- Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020;92(5):479–490. doi: 10.1002/jmv.25707
- Zhang X, Hou J, Lu M. Regulation of hepatitis B virus replication by epigenetic mechanisms and microRNAs. Front Genet. 2013;4:202. doi: 10.3389/fgene.2013.00202
- Zhan Y, Liu L, Zhao T, et al. MicroRNAs involved in innate immunity regulation in the sea cucumber: A review. Fish Shellfish Immunol. 2019;95:297–304. doi: 10.1016/j.fsi.2019.10.049
- Zhang Z, Zhang C, Li F, et al. Regulation of memory CD8+ T cell differentiation by MicroRNAs. Cell Physiol Biochem. 2018;47(6): 2187–2198. doi: 10.1159/000491532
- Zhang Z, Ohto U, Shibata T, et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45(4):737–748. doi: 10.1016/j.immuni.2016.09.011
- Zhao J, He S, Minassian A, et al. Recent advances on viral manipulation of NF-kB signaling pathway. Curr Opin Virol. 2015;15: 103–111. doi: 10.1016/j.coviro.2015.08.013.
