Early onset of cardiovascular disorders in children: risk factors and long-term consequences

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cardiovascular diseases (CVD), including myocardial infarction and stroke, remain the leading cause of morbidity and mortality in industrialized nations. This review highlights studies demonstrating that adverse prenatal factors play a significant role in determining cardiovascular health and contribute to the early development of subclinical atherosclerosis in children and adolescents. Indirect evidence of early atherosclerosis in children can be obtained through non-invasive imaging of vascular changes, such as anatomical alterations (e.g., increased intima-media thickness), mechanical changes (e.g., increased arterial stiffness), and physiological changes (e.g., reduced flow-mediated dilation). Effective early identification of individuals, particularly children, at an increased risk of future cardiovascular diseases is critical for prevention. Existing algorithms for assessing CVD risk or stages primarily rely on “traditional” risk factors. However, these algorithms often fail to accurately detect atherosclerosis in young individuals and are unsuitable for pediatric use, emphasizing the need for alternative methods to classify risk in asymptomatic young patients. This article provides an overview of such methodologies.

About the authors

Tatyana A. Ryazanova

Ural State Medical University

Email: tatianadgb11@mail.ru
ORCID iD: 0000-0002-2332-8602
Russian Federation, 3 Repina St., Yekaterinburg, 620028

Margarita A. Ustyuzhanina

Ural State Medical University

Author for correspondence.
Email: ustmargarita@mail.ru
ORCID iD: 0000-0002-4285-6902
SPIN-code: 5438-4476

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, 3 Repina St., Yekaterinburg, 620028

Olga P. Kovtun

Ural State Medical University

Email: usma@usma.ru
ORCID iD: 0000-0002-5250-7351
SPIN-code: 9919-9048

MD, Dr. Sci. (Medicine), Professor, Academician of the RAS

Russian Federation, 3 Repina St., Yekaterinburg, 620028

Tatyana O. Brodovskaya

Ural State Medical University

Email: tbrod80@gmail.com
ORCID iD: 0000-0002-2847-4422
SPIN-code: 7798-7054

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, 3 Repina St., Yekaterinburg, 620028

References

  1. Skilton MR, Celermajer DS, Cosmi E, et al. Natural history of atherosclerosis and abdominal aortic intima-media thickness: rationale, evidence, and best practice for detection of atherosclerosis in the young. JCM. 2019;8(8):1201. doi: 10.3390/jcm8081201
  2. Skilton MR. Intrauterine Risk factors for precocious atherosclerosis. Pediatrics. 2008;121(3):570–574. doi: 10.1542/peds.2007-1801
  3. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92(5):1355–1374. doi: 10.1161/01.CIR.92.5.1355
  4. Stary HC, Blankenhorn DH, Chandler AB, et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1992;85(1):391–405. doi: 10.1161/01.CIR.85.1.391
  5. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl_5):S213–S256. doi: 10.1542/peds.2009-2107C
  6. Ustiuzhanina MA, Kovtun OP. The new paradigm of childhood obesity: the role in causing of cardiovascular disease, approaches to prevention and treatment from the standpoint of evidence-based medicine. Ural Medical Journal. 2015;(4(127)):84–92. (In Russ.) EDN: UMBKHJ
  7. Kozhevnikova OV, Namazova-Baranova LS, Abashidze EA, et al. On the development of cardiovascular diseases in children with sleep disorders. Current Pediatrics. 2016;14(6):638–644. EDN: VGREPV doi: 10.15690/vsp.v14i6.1471
  8. Kozhevnikova OV, Namazova-Baranova LS, Margieva TV, et al. Night hemodynamic disorder risk factors and markers for patient-specific approach to cardiovascular disease prevention in children. Pediatric pharmacology. 2017;14(3):156–164. EDN: ZBMUPB doi: 10.15690/pf.v14i3.1739
  9. Nakashima Y, Chen YX, Kinukawa N, Sueishi K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. 2002;441(3):279–288. doi: 10.1007/s00428-002-0605-1
  10. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79(1):14–23. doi: 10.1093/cvr/cvn099
  11. Fukuchi M, Watanabe J, Kumagai K, et al. Normal and oxidized low density lipoproteins accumulate deep in physiologically thickened intima of human coronary arteries. Lab Invest. 2002;82(10):1437–1447. doi: 10.1097/01.lab.0000032546.01658.5d
  12. Napoli C, Glass CK, Witztum JL, et al. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet. 1999;354(9186):1234–1241. doi: 10.1016/S0140-6736(99)02131-5
  13. Napoli C, D’Armiento FP, Mancini FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997;100(11):2680–2690. doi: 10.1172/JCI119813
  14. Berenson GS, Srinivasan SR, Bao W, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med. 1998;338(23):1650–1656. doi: 10.1056/NEJM199806043382302
  15. Bland J, Skordalaki A, Emery JL. Early intimal lesions in the common carotid artery. Cardiovasc Res. 1986;20(11):863–868. doi: 10.1093/cvr/20.11.863
  16. Solberg LA, Eggen DA. Localization and sequence of development of atherosclerotic lesions in the carotid and vertebral arteries. Circulation. 1971;43(5):711–724. doi: 10.1161/01.CIR.43.5.711
  17. McGill HC, McMahan CA, Herderick EE, et al. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr. 2000;72(5 Suppl):1307S–1315S. doi: 10.1093/ajcn/72.5.1307s
  18. McMahan CA. Risk scores predict atherosclerotic lesions in young people. Arch Intern Med. 2005;165(8):883. doi: 10.1001/archinte.165.8.883
  19. Maroules CD, Rosero E, Ayers C, et al. Abdominal aortic atherosclerosis at mr imaging is associated with cardiovascular events: The Dallas Heart Study. Radiology. 2013;269(1):84–91. doi: 10.1148/radiol.13122707
  20. Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA. 2003;290(1):86. doi: 10.1001/jama.290.1.86
  21. Gunnell D, Frankel S, Nanchahal K, et al. Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort. Am J Clin Nutr. 1998;67(6):1111–1118. doi: 10.1093/ajcn/67.6.1111
  22. Must A, Jacques PF, Dallal GE, et al. Long-term morbidity and mortality of overweight adolescents: a follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med. 1992;327(19):1350–1355. doi: 10.1056/NEJM199211053271904
  23. Barker DJP, Osmond C, Forsén TJ, et al. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353(17):1802–1809. doi: 10.1056/NEJMoa044160
  24. Rich-Edwards JW, Kleinman K, Michels KB, et al. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ. 2005;330(7500):1115. doi: 10.1136/bmj.38434.629630.E0
  25. Mansfield R, Cecula P, Pedraz CT, et al. Impact of perinatal factors on biomarkers of cardiovascular disease risk in preadolescent children. J Hypertens. 2023;41(7):1059–1067. doi: 10.1097/HJH.0000000000003452
  26. Macmahon S. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–774. doi: 10.1016/0140-6736(90)90878-9
  27. Leeson CPM, Whincup PH, Cook DG, et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation. 1997;96(7):2233–2238. doi: 10.1161/01.CIR.96.7.2233
  28. Leeson CPM, Kattenhorn M, Morley R, et al. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation. 2001;103(9):1264–1268. doi: 10.1161/01.CIR.103.9.1264
  29. Skilton MR, Evans N, Griffiths KA, et al. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet. 2005;365(9469):1484–1486. doi: 10.1016/S0140-6736(05)66419-7
  30. O’Leary DH, Polak JF, Kronmal RA, et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999;340(1):14–22. doi: 10.1056/NEJM199901073400103
  31. Aggoun Y, Szezepanski I, Bonnet D. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events in children. Pediatr Res. 2005;58(2):173–178. doi: 10.1203/01.PDR.0000170900.35571.CB
  32. Groner JA, Joshi M, Bauer JA. Pediatric precursors of adult cardiovascular disease: noninvasive assessment of early vascular changes in children and adolescents. Pediatrics. 2006;118(4):1683–1691. doi: 10.1542/peds.2005-2992
  33. Lundberg C, Hansen T, Ahlström H, et al. The relationship between carotid intima–media thickness and global atherosclerosis. Clin Physiol Funct Imaging. 2014;34(6):457–462. doi: 10.1111/cpf.12116
  34. Drole Torkar A, Plesnik E, Groselj U, et al. Carotid intima-media thickness in healthy children and adolescents: normative data and systematic literature review. Front Cardiovasc Med. 2020;7:597768. doi: 10.3389/fcvm.2020.597768
  35. Urbina EM, Williams RV, Alpert BS, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–950. doi: 10.1161/HYPERTENSIONAHA.109.192639
  36. Kusters DM, Avis HJ, de Groot E, et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA. 2014;312(10):1055. doi: 10.1001/jama.2014.8892
  37. Bots ML, Evans GW, Riley WA, Grobbee DE. Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke. 2003;34(12):2985–2994. doi: 10.1161/01.STR.0000102044.27905.B5
  38. Moretti JB, Michael R, Gervais S, et al. Normal pediatric values of carotid artery intima-media thickness measured by B-mode ultrasound and radiofrequency echo tracking respecting the consensus: a systematic review. Eur Radiol. 2024;34(1):654–666. doi: 10.1007/s00330-023-09994-2
  39. Baroncini LA, Sylvestre Lde C, Pecoits Filho R. Assessment of intima-media thickness in healthy children aged 1 to 15 years. Arq Bras Cardiol. 2016. doi: 10.5935/abc.20160030
  40. Juonala M, Magnussen CG, Venn A, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the cardiovascular risk in young Finns study, the childhood determinants of adult health study, the Bogalusa heart study, and the Muscatine study for the international childhood cardiovascular cohort (i3c) consortium. Circulation. 2010;122(24):2514–2520. doi: 10.1161/CIRCULATIONAHA.110.966465
  41. Ryder JR, Dengel DR, Jacobs DR, et al. Relations among adiposity and insulin resistance with flow-mediated dilation, carotid intima-media thickness, and arterial stiffness in children. J Pediatr. 2016;168:205–211. doi: 10.1016/j.jpeds.2015.08.034
  42. Sadykova DI, Galimova LF, Leontyeva IV, Slastnikova ES. Estimation of the thickness of the intima-media complex in children with familial hypercholesterolemia. Russian Bulletin of Perinatology and Pediatrics. 2018;63(5):152–154. EDN: YMVGGD doi: 10.21508/1027-40652018-63-5-152-154
  43. Tragomalou A, Paltoglou G, Manou M, et al. Non-traditional cardiovascular risk factors in adolescents with obesity and metabolic syndrome may predict future cardiovascular disease. Nutrients. 2023;15(20):4342. doi: 10.3390/nu15204342
  44. Kwak BR, Bäck M, Bochaton-Piallat ML, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 2014;35(43):3013–3020. doi: 10.1093/eurheartj/ehu353
  45. Steinberger J, Daniels SR, Hagberg N, et al. Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American Heart Association. Circulation. 2016;134(12):e236–e255. doi: 10.1161/CIR.0000000000000441
  46. Gidding SS, Bookstein LC, Chomka EV. Usefulness of electron beam tomography in adolescents and young adults with heterozygous familial hypercholesterolemia. Circulation. 1998;98(23):2580–2583. doi: 10.1161/01.CIR.98.23.2580
  47. Gupta S, Berry JD, Ayers CR, et al. Left ventricular hypertrophy, aortic wall thickness, and lifetime predicted risk of cardiovascular disease. JACC Cardiovasc Imaging. 2010;3(6):605–613. doi: 10.1016/j.jcmg.2010.03.005
  48. McCulloch MA, Mauras N, Canas JA, et al. Magnetic resonance imaging measures of decreased aortic strain and distensibility are proportionate to insulin resistance in adolescents with type 1 diabetes mellitus: T1DM adolescents and aortic compliance decrease. Pediatr Diabetes. 2015;16(2):90–97. doi: 10.1111/pedi.12241
  49. Das S, Zhang S, Mitchell D, Gidding SS. Metabolic syndrome with early aortic atherosclerosis in a child. J Cardiometab Syndr. 2006;1(4):286–287. doi: 10.1111/j.1559-4564.2006.05879.x
  50. Alpert BS, Collins RT. Assessment of vascular function: pulse wave velocity. J Pediatr. 2007;150(3):219–220. doi: 10.1016/j.jpeds.2006.12.042
  51. Im JA, Lee JW, Shim JY, et al. Association between brachial-ankle pulse wave velocity and cardiovascular risk factors in healthy adolescents. J Pediatr. 2007;150(3):247–251. doi: 10.1016/j.jpeds.2006.11.038
  52. Korneva VA, Kuznetzova TYu. Assessment of arterial wall stiffness by 24-hour blood pressure monitoring. Terapevticheskii Arkhiv. 2016;88(9):119–124. EDN: WTDAQJ doi: 10.17116/terarkh2016889119-124
  53. Galimova LF, Sadykova DI, Slastnikova ES, et al. Arterial stiffness in familial hypercholesterolemia: are there any risks in childhood? Pediatrics. 2022;101(2):44–49. EDN: XEDXUZ doi: 10.24110/0031-403X-2022-101-2-44-49
  54. Brodovskaya TO. Obstructive sleep apnea associated with obesity impact in early vascular aging. Bulletin of the Dagestan State Medical Academy. 2018;4(29):8–14. EDN: YSOJET
  55. Clinical practice guidelines for Hypertension in adults. Available from: https://cr.minzdrav.gov.ru/recomend/62_2 (In Russ.) EDN: GUEWLU doi: 10.15829/1560-4071-2024-6117
  56. The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values.’ Eur Heart J. 2010;31(19):2338–2350. doi: 10.1093/eurheartj/ehq165
  57. Reusz GS, Cseprekal O, Temmar M, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56(2):217–224. doi: 10.1161/HYPERTENSIONAHA.110.152686
  58. Urbina EM, Kimball TR, Khoury PR, et al. Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J Hypertens. 2010;28(8):1692–1698. doi: 10.1097/HJH.0b013e32833a6132
  59. Azukaitis K, Jankauskiene A, Schaefer F, Shroff R. Pathophysiology and consequences of arterial stiffness in children with chronic kidney disease. Pediatr Nephrol. 2021;36(7):1683–1695. doi: 10.1007/s00467-020-04732-y
  60. Bayman E, Drake AJ, Piyasena C. Prematurity and programming of cardiovascular disease risk: a future challenge for public health? Arch Dis Child Fetal Neonatal Ed. 2014;99(6):F510–F514. doi: 10.1136/archdischild-2014-306742
  61. Bichali S, Bruel A, Boivin M, et al. Simplified pulse wave velocity measurement in children: Is the pOpmètre valid? PLoS One. 2020;15(3):e0230817. doi: 10.1371/journal.pone.0230817
  62. Cai TY, Meroni A, Dissanayake H, et al. Validation of a cuff-based device for measuring carotid-femoral pulse wave velocity in children and adolescents. J Hum Hypertens. 2020;34(4):311–318. doi: 10.1038/s41371-019-0191-1
  63. McCallinhart PE, Lee YU, Lee A, et al. Dissociation of pulse wave velocity and aortic wall stiffness in diabetic db/db mice: The influence of blood pressure. Front Physiol. 2023;14:1154454. doi: 10.3389/fphys.2023.1154454
  64. Bruyndonckx L, Hoymans VY, Lemmens K, et al. Childhood obesity–related endothelial dysfunction: an update on pathophysiological mechanisms and diagnostic advancements. Pediatr Res. 2016;79(6):831–837. doi: 10.1038/pr.2016.22
  65. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26(5):1235–1241. doi: 10.1016/0735-1097(95)00327-4
  66. Charakida M, Jones A, Falaschetti E, et al. Childhood obesity and vascular phenotypes. J Am Coll Cardiol. 2012;60(25):2643–2650. doi: 10.1016/j.jacc.2012.08.1017
  67. Alpsoy S, Akyuz A, Akkoyun DC, et al. Is overweight a risk of early atherosclerosis in childhood? Angiology. 2020;71(5):438–443. doi: 10.1177/0003319713476134
  68. Mather KJ, Steinberg HO, Baron AD. Insulin resistance in the vasculature. J Clin Invest. 2013;123(3):1003–1004. doi: 10.1172/JCI67166
  69. Cao L, Hou M, Zhou W, et al. Decreased flow-mediated dilatation in children with type 1 diabetes: a systematic review and meta-analysis. Angiology. 2021;72(10):908–915. doi: 10.1177/00033197211010096
  70. Kontos A, Pamula Y, Martin J, et al. Flow-mediated dilatation, using time course data, shows maturation of the brachial artery from young children to mid-adolescents. Clin Exp Pharmacol Physiol. 2015;42(3):240–245. doi: 10.1111/1440-1681.12349

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».