Modern technologies of early diagnosis of wound infection
- Authors: Svistunov S.A.1, Kuzin A.A.1, Zharkov D.A.1, Lantsov E.V.1, Morozov S.A.1, Svistunova I.A.2, Shkarupa V.V.3
-
Affiliations:
- Military Medical Academy
- Saint Petersburg State Agrarian University
- Military Medical Academ
- Issue: Vol 43, No 1 (2024)
- Pages: 59-68
- Section: Reviews
- URL: https://journal-vniispk.ru/RMMArep/article/view/257002
- DOI: https://doi.org/10.17816/rmmar622879
- ID: 257002
Cite item
Full Text
Abstract
The article presents an analysis of the data of modern literature devoted to the study of early diagnosis of wound infection. It is well known that wound healing is a very complex and dynamic mechanism of wound re-epithelialization. At the same time, the normal microflora of the skin plays an important function for maintaining homeostasis and the formation of the skin. There are about 1000 species of microorganisms belonging to the normal flora of human skin and do not cause any harm to healthy people. At the same time, there are microorganisms that, when they enter the wound, lead to the development of infectious complications of wounds as a result of a violation of the integrity of the skin. They include both gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Enterobacter spp., Morganella spp., etc.). Early detection of these microorganisms will contribute to timely and high-quality treatment of wound infection. Currently, there are certain conditions that limit the use of microbiological research methods used to establish a clinical diagnosis of wound infection (long duration, labor intensity, required level of qualification of specialists, etc.). This dictates the need to develop new, fast and easy-to-use methods for diagnosing wound infection. To this end, a group of researchers from Russia (Skolkovo Institute of Science and Technology) and the USA (University of Texas at Austin) have recently developed wearable sensors for the diagnosis of wound infection. These sensors can be embedded in wound dressings and are able to detect certain biomarkers indicating the presence of wound infection. Among these biomarkers, pH and uric acid are the most commonly used, but there are many others (lactic acid, oxygenation, inflammatory mediators, bacterial metabolites or the bacteria themselves). Currently, the development of microelectronics, the emergence of biochemical sensors, active microfluidics and painless microneedles have led to the creation of new generations of wearable biosensors that provide completely new opportunities in the fight against wound infection.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Sergey A. Svistunov
Military Medical Academy
Email: izvestiavmeda@mail.ru
ORCID iD: 0000-0002-8138-5103
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgAlexander A. Kuzin
Military Medical Academy
Email: izvestiavmeda@mail.ru
ORCID iD: 0000-0001-9154-7017
MD, Dr. Sci. (Medicine), Associate Professor
Russian Federation, Saint PetersburgDenis A. Zharkov
Military Medical Academy
Email: izvestiavmeda@mail.ru
ORCID iD: 0000-0001-5690-2861
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgEvgeny V. Lantsov
Military Medical Academy
Email: izvestiavmeda@mail.ru
ORCID iD: 0000-0001-7462-173X
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgSergey A. Morozov
Military Medical Academy
Email: izvestiavmeda@mail.ru
ORCID iD: 0000-0001-8069-6148
Adjunct
Russian Federation, Saint PetersburgIrina A. Svistunova
Saint Petersburg State Agrarian University
Email: mackary@yandex.ru
ORCID iD: 0000-0003-1670-2720
Russian Federation, Saint Petersburg
Vitaly V. Shkarupa
Military Medical Academ
Author for correspondence.
Email: izvestiavmeda@mail.ru
ORCID iD: 0009-0001-6162-1834
Russian Federation, Saint Petersburg
References
- Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi: 10.1016/S1473-3099(18)30605-4
- Magnano San Lio R, Favara G, Maugeri A, et al. How antimicrobial resistance is linked to climate change: an overview of two intertwined global challenges. Int J Environ Res Public Health. 2023;20(3):1681. doi: 10.3390/ijerph20031681
- Svistunov SA, Kuzin AA, Suborova TN, et al. Features and directions for the prevention of health care-associated infections at the stage of specialized medical care. Bulletin of the Russian Military Medical Academy. 2019;21(3):174–177. (In Russ.)
- Potaturkina-Nesterova NI, ed. Skin microbiota in normal and pathological conditions. Ul’yanovsk: UlGTU Publishing Hоuse; 2014. 113 p. (In Russ.)
- Bizina EV, Farafonova OV, Tarasova NV, Ermolaeva TN. Synthesis and application of magnetic molecularly imprinted tetracycline polymer nanoparticles in a piezoelectric sensor. Sorbcionny’e i khromatograficheskie processy. 2021;21(2):177–186. (In Russ.) doi: 10.17308/sorpchrom.2021.21/3352
- Gulij OI, Zajcev BD, Alsove’jdi AKM., et al. Biosensor systems for the determination of antibiotics. Biofizika. 2021;66(4):657–667. (In Russ.) doi: 10.31857/S0006302921040050
- Ogarkov PI, Kuzin AA, Svistunov SA, et al. Promising technologies in the system of ensuring the sanitary and epidemiological welfare of troops. Military Medical Journal. 2016;337(3):92–94. (In Russ.) EDN: WQUTHP
- Trishkin DV, Fisun AYa, Kryukov EV, Vertiy BD. Military medicine and modern wars: historical experience and forecasts of what to expect and what to prepare for. In: State and prospects for the development of modern science in the direction of «Biotechnical systems and technologies»: Collection of articles of the III All-Russian Scientific and Technical Conference, Anapa. 2021 May 27–28. Anapa: Voenny’j innovacionny’j texnopolis “E’RA” Publ.; 2021. P. 8–16. (In Russ.) EDN UHYZMB
- Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27(3):631–646. doi: 10.1128/CMR.00120-13
- Barchitta M, Quattrocchi A, Maugeri A, et al. The “Obiettivo Antibiotico” campaign on prudent use of antibiotics in Sicily, Italy: the pilot phase. Int J Environ Res Public Health. 2020;17(9):3077. doi: 10.3390/ijerph17093077
- Caygill RL, Blair GE, Millner PA. A review on viral biosensors to detect human pathogens. Anal Chim Acta. 2010;681(1–2):8–15. doi: 10.1016/j.aca.2010.09.038
- Chinnappan R, Eissa S, Alotaibi A, et al. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Anal Chim Acta. 2020;1101:149–156. doi: 10.1016/j.aca.2019.12.023
- Cоleman WB, Tsоgalis GJ, eds. Diagnostic Molecular Pathology. A Guide to Applied Molecular Testing. Academic Press Elsevier Inc.; 2016. P. 541–561
- Duyen TT, Matsuura H, Ujiie K, et al. Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. J Biosci Bioeng. 2017;123(1):96–100. doi: 10.1016/j.jbiosc.2016.07.015
- Gandra S, Alvarez-Uria G, Turner P, et al. Antimicrobial resistance surveillance in low-and middle-income countries: Progress and challenges in eight south Asian and southeast Asian countries. Clin Microbiol Rev. 2020;33(3):e00048–19. doi: 10.1128/CMR.00048-19
- Hendriksen RS, Bortolaia V, Tate H, et al. Using genomics to track global antimicrobial resistance. Front Public Health. 2019;7:242. doi: 10.3389/fpubh.2019.00242
- Justino CIL, Duarte AC, Rocha-Santos TAP. Recent progress in biosensors for environmental monitoring: a review. Sensors (Basel). 2017;17(12):2918. doi: 10.3390/s17122918
- Karbelkar AA, Furst AL. Electrochemical diagnostics for bacterial infectious diseases. ACS Infect Dis. 2020;6(7):1567–1571. doi: 10.1021/acsinfecdis.0c00342
- Lai LM, Goon IY, Chuah K, et al. The biochemiresistor: an ultrasensitive biosensor for small organic molecules. Angew Chem Int Ed Engl. 2012;51(26):6456–6459. doi: 10.1002/anie.201202350
- Lau S, Fei J, Liu H, et al. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for inproving effective drug delivery. J Control Release. 2017;265:113–119. doi: 10.1016/j.jconrel.2016.08.031
- Laxminarayan R, Van Boeckel T, Frost I, et al. The lancet infectious diseases commission on antimicrobial resistance: 6 years later. Lancet Infect Dis. 2020;20(4):e51–60. doi: 10.1016/S1473-3099(20)30003-7
- Liu Y, Hua X, Zhang M, et al. Recovery of steviol glycosides from industrial stevia by-product via crystallization and reversed-phase chromatography. Food Chem. 2021;344:128716. doi: 10.1016/j.foodchem.2020.128726
- Majdinasab M, Mitsubayashi K, Marty JL. Optical and electrochemical sensors and biosensors for the detection of quinolones. Trends Biotechnol. 2019;37(8):898–915. doi: 10.1016/j.tibtech.2019.01.004
- Munk P, Knudsen BE, Lukjancenko O, et al. Author correction: abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol. 2018;3(10):1186. doi: 10.1038/s41564-018-0241-4
- Nag P, Sadani K, Mohapatra S, Mukherji S. Evanescent wave optical fiber sensors using enzymatic hydrolysis on nanostructured polyaniline for detection of β-lactam antibiotics in food and environment. Anal Chem. 2021;93(4):2299–2308. doi: 10.1021/acs.analchem.0c04169
- Guliy OI, Bunin VD. Electro-optical Analysis as Sensing System for Detection and Diagnostics of Bacterial Cells. In: Chandra P, Pandey LM, eds. Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery. Singapore: Springer, 2020. P. 233–254. doi: 10.1007/978-981-15-4790-4_11
- Guliy OI, Zaitsev BD, Borodina IA. New approach for determination of antimicrobial susceptibility to antibiotics by an acoustic sensor. Appl Microbiol Biotechnol. 2020;104(3):1283–1290. doi: 10.1007/s00253-019-10295-2
- Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345–360. doi: 10.1016/j.scitotenv.2013.01.032
- Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst. 2019;144(22):6461–6478. doi: 10.1039/C9AN01747J
- Yang Y, Liu G, Ye C, Liu W. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan plateau. J Hazard Mater. 2019;361:283–293. doi: 10.1016/j.jhazmat.2018.09.002
- Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34(1):7–25. doi: 10.1016/j.tibtech.2015.09.012
- Gowers SAN, Freeman DME, Rawson TM, et al. Development of a Minimary Invasive Microneedle-Based Sensor for Continuouns Monitoring of ß-Lactam Antibiotic Concentration in Vivo. ACS Sens. 2019;4(4):1072–1080. doi: 10.1021/acsensors.9b00288
- Berchmans S, Bandodkar A, Jia W, et al. An epidermal alkaline re Chargeable Ag-Zn printable tattoo battery for Wearable electronics. Journal of Materials Chemistry A. 2014;2:15788–15795. doi: 10.1039/C4TA03256J
- Sotnikov DV, Zherdev AV, Dzantiev BB. Detection of intermolecular interactions based on registration of surface plasmon resonance. Advances in biological chemistry. 2015;55:391–420. (In Russ.)
Supplementary files
