Theoretical analysis of the predictability indices of the binary genetic tests

Cover Page

Cite item

Full Text

Abstract

A set of formulas for the indices of performance and predictive ability of the binary genetic tests is presented. Their dependence on disease prevalence and population frequency of a genetic marker is characterized. It is shown that a marker with the odds ratio OR < 2.2 has an initially low prognostic efficiency in every sense and at any frequencies of the disease and the marker. A marker can be a good classifier, when OR > 5.4, but only when its population frequency is rather high (>0.3). The formulas are presented that allow to obtain indirect estimates of absolute and relative risk of the disease for the carrier of a marker in the case-control studies

About the authors

Aleksandr Vladimirovich Rubanovich

Vavilov Institute of General Genetics RAS

Email: rubanovich@vigg.ru
Head of Lab of ecological genetic

Nikita Nikolayevich Khromov-Borisov

Saint-Petersburg State I. P. Pavlov Medical University

Email: Nikita.KhromovBorisov@gmail.com
ssociate professor, Department of Physics, Mathematics and Informatics

References

  1. Aly M., Wiklun F., Xu J. et al., 2011. Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study // European Urology. Vol. 60. P. 21–28.
  2. Anonymous, 1996. How good is the test // Bandolier Journal. N 27. P. 2. http://www.medicine.ox.ac.uk/bandolier/painres/download/Bando027.pdf http://www.medicine.ox.ac.uk/bandolier/band27/b27–2.html.
  3. Banks E., Reeves G., Beral V. et. al., 2004. Influence of personal characteristics of individual women on sensitivity and specificity of mammography in the Million Women Study: cohort study // BMJ. Vol. 329. N. 7464. P. 477–479.
  4. Bjartell A., 2011. Genetic markers and the risk of developing prostate cancer // European Urology. Vol. 60. P. 29–31.
  5. Bossuyt P., 2010. Clinical validity: Defining biomarker performance // Scandinavian Journal of Clinical & Laboratory Investigation. 70. P. 46–52
  6. Cohen J., 1960. A coefficient of agreement for nominal scales // Educational and Psychological Measurement. Vol. 20. P. 37–46.
  7. Fawcett T., 2006. An introduction to ROC analysis //Pattern Recognition Letters. Vol. 27. P. 861–874.
  8. Folsom A., Cushman M., Tsai M. et al., 2002. A prospective study of venous thromboembolism in relation to factor V Leiden and related factors // Blood. Vol. 99. N. 9. P. 2720–2725.
  9. Ioannidis J., 2006. Commentary: Grading the credibility of molecular evidence for complex diseases //International Journal of Epidemiology. Vol. 35. P. 572–577.
  10. Jakobsdottir J., Gorin M. B., Conley Y. P. et al., 2009. Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers // PLoS Genet. Vol. 5. N 2. e1000337.
  11. King G., Zeng L., 2002. Estimating risk and rate levels, ratios, and differences in case-control studies // Statistics in Medicine. Vol. 21. P. 1409–1427.
  12. Kraft P., Wacholder S., Cornelis M. C. et al., 2009. Beyond odds ratios — communicating disease risk based on genetic profiles // Nature Reviews Genetics. Vol. 10. P. 264–269.
  13. Kraemer H. C., Frank E., Kupfer D. J., 2011. How to assess the clinical impact of treatments on patients, rather than the statistical impact of treatments on measures // International Journal of Methods Psychiatric Research. Vol. 20. P. 63–72.
  14. Landis J. R., Koch G. G., 1977. The measurement of observer agreement for categorical data // Biometrics. Vol. 33. P. 159–174.
  15. Levin M. L., 1953. The occurrence of lung cancer in man // Acta Union International Contra Cancrum. Vol. 9. P. 531–541.
  16. Lewontin R. C., Kojima K., 1960. The evolutionary dynamics of complex polymorphisms // Evolution. Vol. 14. P. 458–472.
  17. Linn S., Grunau P. D., 2006. New patient-oriented summary measure of net total gain in certainty for dichotomous diagnostic tests // Epidemiologic Perspectives & Innovations. Vol. 3: 11. http://www.epi-perspectives.com/content/3/1/11.
  18. Mitchell A., 2009a. How To: Implement a Screening Programme for Distress in Cancer Settings // Psycho-oncology.info. — Guide # 101. http://www.psycho-oncology.info/PG_implement_ajmitchell.pdf.
  19. Mitchell A., 2009b. How To: Analyse a Screening or Diagnostic Study // Psycho-oncology.info. — Guide # 104. http://www.psycho-oncology.info/PG_analyse_ajmitchell.pdf.
  20. Pepe M. S., Gu J. W., Morris D. E., 2010. The potential of genes and other markers to inform about risk // Cancer Epidemiology, Biomarkers & Prevention. Vol. 19. P. 655–665.
  21. Poste G., 2011. Bring on the biomarkers // Nature. Vol. 469. P. 156–157.
  22. Sistrom C. L., Garvan C. W., 2004. Proportions, odds, and risk // Radiology. Vol. 230. P. 12–19.
  23. Slatkin M., 2008. Linkage disequilibrium — understanding the evolutionary past and mapping the medical future // Nature Reviews Genetics. Vol. 9. P. 477–485.
  24. Spielman R. S., McGinnis R. E., Ewens W. J., 1994. Letter to the Editor: The transmission/disequilibrium test detects cosegregation and linkage // American Journal of Human Genetics Vol. 54. P. 559–560.
  25. Swets J. A., 1988. Measuring the accuracy of diagnostic systems // Science. Vol. 240. P. 1285–1293.
  26. Tan P. N., Kumar V., Srivastava J., 2004. Selecting the right objective measure for association analysis //Information Systems. Vol. 29. P. 293–313.
  27. Winham S. J., Slater A. J., Motsinger-Reif A. A., 2010. A comparison of internal validation techniques for multifactor dimensionality reduction // BMC Bioinformatics. Vol. 11:394. http://www.biomedcentral.com/1471–2105/11/394
  28. Youden W. J., 1950. Index for rating diagnostic tests //Cancer. Vol. 3. P. 32–35.
  29. Yule G. U., 1912. On the methods of measuring association between two attributes // Journal of the Royal Statistical Society. Vol. 75. P. 579–652.
  30. Zhang J., Yu K. F., 1998. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes // JAMA. Vol. 280. P. 1690–1691.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Rubanovich A.V., Khromov-Borisov N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».