Cerebral edema and cognitive dysfunction: pathophysiological interconnections in diabetic ketoacidosis in childhood
- Authors: Bykov Y.V.1,2
-
Affiliations:
- Stavropol State Medical University
- Children’s City Clinical Hospital named after G.K. Filippsky
- Issue: Vol 15, No 4 (2024)
- Pages: 63-71
- Section: Reviews
- URL: https://journal-vniispk.ru/pediatr/article/view/279240
- DOI: https://doi.org/10.17816/PED15463-71
- ID: 279240
Cite item
Abstract
Diabetic ketoacidosis is one of the most common complications in children suffering from diabetes mellitus, a complication that may cause cerebral edema. After a diabetic ketoacidosis episode, some children develop cognitive impairment, which could be linked to subclinical or clinical grade cerebral edema. An analysis of scientific literature has shown that the pathophysiological mechanisms of the development of cognitive dysfunction in children with diabetic ketoacidosis-associated cerebral edema have not been fully elucidated. The key pathogenetic hypotheses under consideration include hypoxia, cerebral hypoperfusion and reperfusion, release of vasoactive substances and induction of inflammation, acute hyperglycemia and oxidative stress. Hypoxia leads to hypoxic-ischaemic injury of the brain, affecting, among others, areas responsible for memory formation. Cerebral hypoperfusion and reperfusion trigger mitochondrial dysfunction and oxidative stress, which worsens the cognitive impairment in patients with cerebral edema. Release of vasoactive substances and induction of inflammation impair the functioning of the blood-brain barrier and lead to cerebral vasospasm. Acute hypoglycemia triggers the development of brain tissue acidosis and accumulation of lactate and glutamate, aggravating the cognitive dysfunction. Oxidative stress causes neuronal damage, exacerbating the manifestations of cerebral edema. The pathophysiological mechanisms described here may cause cognitive dysfunction in the setting of cerebral edema either as individual triggers or collectively through a synergistic effect. Further research is needed to expand the knowledge of pathophysiological interconnections between cognitive dysfunction and cerebral edema in children after a diabetic ketoacidosis episode.
Full Text
##article.viewOnOriginalSite##About the authors
Yuri V. Bykov
Stavropol State Medical University; Children’s City Clinical Hospital named after G.K. Filippsky
Author for correspondence.
Email: yubykov@gmail.com
SPIN-code: 8201-6023
MD, PhD, Assistant Professor of the Department of Anesthesiology and Intensive Care with a Course of Additional Professional Education
Russian Federation, 310 Mira st., Stavropol, 355017; StavropolReferences
- Bykov YuV, Baturin VA. Pathophysiological mechanisms of cerebral edema in diabetic ketoacidosis in pediatric practice. Medicina. 2021;9(1): 116–127. EDN: KYLPOG doi: 10.29234/2308-9113-2021-9-1-116-127
- Bykov YuV. Diabetic ketoacidosis in children and adolescents: from pathophysiology to prevention. Transbaikalian medical bulletin. 2021;(2):85–95. EDN: VMELQB doi: 10.52485/19986173_2021_2_85
- Azova S, Rapaport R, Wolfsdorf J. Brain injury in children with diabetic ketoacidosis: Review of the literature and a proposed pathophysiologic pathway for the development of cerebral edema. Pediatr Diabetes. 2021;22(2):148–160. doi: 10.1111/pedi.13152
- Butterfield DA. Oxidative stress in brain in amnestic mild cognitive impairment. Antioxidants (Basel). 2023;12(2):462. doi: 10.3390/antiox12020462
- Cameron FJ, Scratch SE, Nadebaum C, et al. Neurological consequences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care. 2014;37(6):1554–1562. doi: 10.2337/dc13–1904
- Cato MA, Mauras N, Ambrosino J, et al. Cognitive functioning in young children with type 1 diabetes. J Int Neuropsychol Soc. 2014;20(2):238–247. doi: 10.1017/S1355617713001434
- Ciechanowska M, Starzyk J. Diabetic ketoacidosis in course of dibetes type 1 in children. Diagnosis and treatment in first 24 h. Endokrynologia. Otyłosc i Zaburzenia Przemiany Materii. 2009;5: 28–35. [In Polish]
- Dhatariya KK, Glaser NS, Codner E, Umpierrez GE. Diabetic ketoacidosis. Nat Rev Dis Primers. 2020;6:40. doi: 10.1038/s41572-020-0165-1
- Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23(3):293–299. doi: 10.1097/WCO.0b013e328337f451
- Eisenhut M. In diabetic ketoacidosis brain injury including cerebral oedema and infarction is caused by interleukin-1. Med Hypotheses. 2018;121:44–46. doi: 10.1016/j.mehy.2018.09.005
- Eisenhut M. Increased activity of inflammasomes as osmosensors as cause of cerebral edema in diabetic ketoacidosis. JSIN. 2016;2(4):210–212. doi: 10.15761/JSIN.1000137
- Eisenhut M. Vasospasm in cerebral inflammation. Int J Inflam. 2014;509707. doi: 10.1155/2014/509707
- El-Remessy AB. Diabetic ketoacidosis management: updates and challenges for specific patient population. Endocrines. 2022;3(4): 801–812. doi: 10.3390/endocrines3040066
- Ghetti S, Kuppermann N, Rewers A, et al. Cognitive function following diabetic ketoacidosis in children with new-onset or previously diagnosed type 1 diabetes. Diabetes Care. 2020;43(11):2768–2775. doi: 10.2337/dc20-0187
- Ghetti S, Lee J, Holtpatrick C, et al. Diabetic ketoacidosis and memory impariment in children with type 1 diabetes. J Pediatr. 2010;156(1):109–114. doi: 10.1016/j.jpeds.2009.07.054
- Glaser N, Bundros A, Anderson S, et al. Brain cell swelling during hypocapnia increases with hyperglycemia or ketosis. Pediatr Diabetes. 2014;15(7):484–493. doi: 10.1111/pedi.12114
- Glaser N, Fritsch M, Priyambada L, et al. ISPD clinical practice consensus guidelines 2022: Diabetic ketoacidosis and hyperglycemic osmolar state. Pediatr Diabetes. 2022;23(7):835–856. doi: 10.1111/pedi.13406
- Glaser N, Ngo C, Anderson S, et al. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism. Diabetes. 2012;61(7):1831–1837. doi: 10.2337/db11-1286
- Gupta M, Pandey S, Rumman M, et al. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep. 2022;14:57–63. doi: 10.1016/j.ibneur.2022.12.006
- Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol. 2017;10(4):409–428. doi: 10.1080/17512433.2017.1293521
- Hoffman WH, Whelan SA, Lee N. Tryptophan, kynurenine pathway, and diabetic ketoacidosis in type 1 diabetes. PLoS One. 2021;16(7):0254116. doi: 10.1371/journal.pone.0254116
- Jerath RS, Burek CL, Hoffman WH, Passmore GG. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol. 2005;116(1):11–17. doi: 10.1016/j.clim.2005.03.004
- Kostopoulou E, Sinopidis X, Fouzas S, et al. Diabetic ketoacidosis in children and adolescents; diagnostic and therapeutic pitfalls. Diagnostics (Basel). 2023;13(15):2602. doi: 10.3390/diagnostics13152602
- Lazar I, Wizeman-Orlov D, Hazan G, et al. The role of anion gap normalization time in the management of pediatric diabetic ketoacidosis. Front Pediatr. 2023;11:1198581. doi: 10.3389/fped.2023.1198581
- Lisser DFJ, Lister ZM, Pham-Ho FQH, et al. Relationship between oxidative stress and brain swelling in goldfish (Carassius auratus) exposed to high environmental ammonia. Am J Physiol Regul Integr Comp Physiol. 2017;312(1):114–124. doi: 10.1152/ajpregu.00208.2016
- Liu H, Zhang J. Cerebral hypoperfusion and cognitive impairment: the pathogenic role of vascular oxidative stress. Int J Neurosci. 2012;122(9):494–499. doi: 10.3109/00207454.2012.686543
- Liu P, Pan L, Cui L, et al. ameliorates acute hypobaric hypoxia induced blood-brain barrier disruption, and cognitive impairment partly by suppressing the TLR4/NF-κB/MMP-9 pathway in the adult rats. Eur J Pharmacol. 2022;924:174952. doi: 10.1016/j.ejphar.2022.174952
- Lo W, O’Donnell M, Tancredi D, et al. Diabetic ketoacidosis in juvenile rats is associated with reactive gliosis and activation of microglia in the hippocampus. Pediatr Diabetes. 2016;17(2):127–139. doi: 10.1111/pedi.12251
- Mackay MT, Molesworth C, Northam EA, et al. Diabetic ketoacidosis and electroencephalographic changes in newly diagnosed pediatric patients. Pediatr Diabetes. 2016;17(4):244–248. doi: 10.1111/pedi.12284
- Michinaga S, Koyama Y. Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci. 2015;16(5):9949–9975. doi: 10.3390/ijms16059949
- Muir AB, Quisling RG, Yang MC, Rosenbloom AL. Cerebral edema in childhood diabetic ketoacidosis: natural history, radiographic findings, and early identification. Diabetes Care. 2004;27(7):1541–1546. doi: 10.2337/diacare.27.7.1541
- Nehring SM, Tadi P, Tenny S. Cerebral edema. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
- Nguyen HS, Callahan JD, Cohen-Gadol AA. Life-saving decompressive craniectomy for diffuse cerebral edema during an episode of new-onset diabetic ketoacidosis: case report and review of the literature. Childs Nerv Syst. 2011;27(4):657–664. doi: 10.1007/s00381-010-1285-9
- Otal Y, Kahraman FA, Haydar FG, Erel Ö. Dynamic thiol/disulfide homeostasis as oxidative stress marker in diabetic ketoacidosis. Turk J Med Sci. 2021;51(2):743–748. doi: 10.3906/sag-1904-55
- Passanisi S, Salzano G, Basile P, et al. Prevalence and clinical features of severe diabetic ketoacidosis treated in pediatric intensive care unit: a 5-year monocentric experience. Ital J Pediatr. 2023;49(1):58. doi: 10.1186/s13052-023-01448-1
- Rajeev V, Chai YL, Poh L, et al. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun. 2023;11(1):93. doi: 10.1186/s40478-023-01590-1
- Ryan CM, van Duinkerken E, Rosano C. Neurocognitive consequences of diabetes. Am Psychol. 2016;71(7):563–576. doi: 10.1037/a0040455
- Shehata G, Eltayeb A. Cognitive function and event-related potentials in children with type 1 diabetes mellitus. J Child Neurol. 2010;25(4):469–474. doi: 10.1177/0883073809341667
- Siller AF, Lugar H, Rutlin J, et al. Severity of clinical presentation in youth with type 1 diabetes is associated with differences in brain structure. Pediatr Diabetes. 2017;18(8):686–695. doi: 10.1111/pedi.12420
- Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6(3):179–192. doi: 10.2174/157015908785777210
- Szmygel Ł, Kosiak W, Zorena K, Myśliwiec M. Optic nerve and cerebral edema in the course of diabetic ketoacidosis. Curr Neuropharmacol. 2016;14(8):784–791. doi: 10.2174/1570159x14666160225155151
- Vavilala MS, Marro KI, Richards TL, et al. Change in mean transit time, apparent diffusion coefficient, and cerebral blood volume during pediatric diabetic ketoacidosis treatment. Pediatr Crit Care Med. 2011;12(6):e344–e349. doi: 10.1097/PCC.0b013e3182196c9c
- Wang W, Liu X, Yang Z, et al. Levodopa improves cognitive function and the deficits of structural synaptic plasticity in hippocampus induced by global cerebral ischemia/reperfusion injury in rats. Front Neurosci. 2020;14:586321. doi: 10.3389/fnins.2020.586321
- Wang X, Cui L, Ji X. Cognitive impairment caused by hypoxia: from clinical evidences to molecular mechanisms. Metab Brain Dis. 2022;37(1):51–66. doi: 10.1007/s11011-021-00796-3
- Watts W, Edge JA. How can cerebral edema during treatment of diabetic ketoacidosis be avoided? Pediatr Diabetes. 2014;15(4): 271–276. doi: 10.1111/pedi.12155
- Wolfsdorf J, Craig ME, Daneman D, et al. Diabeticketoacidosis. ISPAD clinical practice consensus guidelines 20062007. Pediatr Diabetes. 2007;8:28–43. doi: 10.1111/j.1399-5448.2007.00224.x
- Xiong A, Li J, Xiong R, et al. Inhibition of HIF-1α-AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model. Sci Rep. 2022;12(1):2701. doi: 10.1038/s41598-022-06773-9
- Yang F, Zhao K, Zhang X, et al. ATP induces disruption of tight junction proteins via IL-1 beta-dependent MMP-9 activation of human blood-brain barrier in vitro. Neural Plast. 2016;2016:8928530. doi: 10.1155/2016/8928530
- Zhou C, Zhou F, He Y, et al. Exosomes in cerebral ischemia-reperfusion injury: Current perspectives and future challenges. Brain Sci. 2022;12(12):1657. doi: 10.3390/brainsci12121657
Supplementary files
