Technical aspect of the operation of accelerometers as composition of a system for monitoring engineering structures of a cable-stayed bridge over the Petrovsky canal in the construction of the Western Speed Diameter highway in Saint Petersburg

Cover Page

Cite item

Full Text

Abstract

Aim. This study analyzes the current monitoring system for the engineering structures of a cable-stayed bridge across the Petrovsky Canal, part of the Western High-Speed Diameter highway in St. Petersburg, focusing on emergency situations where accelerometers on pylons record values that exceed limits.

Methods and Materials. The study utilizes statistical data from existing monitoring system databases. The tasks, set within the framework of the study, are accomplished by applying theoretical scientific methods including analytical techniques, mathematical statistics, and induction.

Results. The analysis presents an overview of the current system used for monitoring engineering structures and highlights issues related to emergency situations in which accelerometer readings exceed threshold values. This study proposes a method for assessing the reliability of the monitoring system by classifying the data obtained from the accelerometer into two groups. The research identifies the need for further investigations to understand the root causes of these issues.

Conclusion. Тhe results can assist in the design and installation of monitoring systems of the engineering structures for cable-stayed bridges, as well as for modernization and optimization of existing monitoring systems to improve the quality of structural technical condition assessments.

About the authors

Andrey A. Makhonko

Highway Operator Nord, LLC

Author for correspondence.
Email: makhonkoaa@gmail.com
ORCID iD: 0009-0003-6763-2811
SPIN-code: 3629-3734

Head of Construction Supervision Department

Russian Federation, Saint Petersburg

Yuri G. Lazarev

Peter the Great St. Petersburg Polytechnic University

Email: lazarev_yug@spbstu.ru
ORCID iD: 0000-0002-5616-1191
SPIN-code: 5456-2574

Doctor of Sciences in Engineering, Professor

Russian Federation, Saint Petersburg

Anatoly A. Antonyuk

Emperor Alexander I St. Petersburg State Transport University

Email: aaa.12.03.1992@mail.ru
ORCID iD: 0000-0001-7169-6592
SPIN-code: 4469-8646

Engineer

Russian Federation, Saint Petersburg

References

  1. State Standard 59943-2021. Automobile roads of general use. Systems of monitoring bridges. Design rules. FGBU “RST”; 2022. (In Russ.) Accessed: 20.04.2024. Available from: https://docs.cntd.ru/document/1200182099
  2. Vasil’ev AI. Monitoring tehnicheskogo sostojanija mostovyh sooruzhenij. Moscow: MADI; 2021. (In Russ.) Accessed: 20.04.2024. Available from: https://lib.madi.ru/fel/fel1/fel21E560.pdf
  3. Makhonko АА, Malkov АV, Belyi АА, Antonyuk АА. Osobennosti sistemy monitoringa vantovogo mosta cherez Petrovskij kanal v stvore avtomobilnoj dorogi “Zapadnyj skorostnoj diametr” v Sankt-Peterburge. Putevoi navigator. 2023;56(82);68–77. (In Russ.)
  4. Makhonko AA, Malkov AV, Belyi AA, Antonyuk AA. Experience in operating the monitoring system for a cable-stayed bridge across the Petrovsky Canal in the alignment of the Western High-Speed Diameter highway in St. Petersburg. Modern Transportation Systems and Technologies. 2023;9(2):83–96. (In Russ.) doi: 10.17816/transsyst20239283-96
  5. Karapetov JeS, Belyj AA. Monitoring mostovyh sooruzhenij Sankt-Peterburga. Istorija. Naznachenie. Primery. Perspektivy. Vestnik “Zodchij. 21 vek”. 2008; 4;80–83 (In Russ.) EDN: KZPOXH
  6. Vasil’ev AI. Monitoring mostovyh sooruzhenij. Zadachi, vozmozhnosti, problem. Dorozhnaja derzhava. 11/2008. 2008;(11):80–82. (In Russ.) Accessed: 20.04.2024. Available from: https://lib.madi.ru/fel/fel1/fel21E560.pdf
  7. Ivanov YS, Snezhkov II, Shaplin IV, Yashnov AN. Automation Process of Determining the Force in the Cable Elements of Bridges Over Own Frequencies of Vibrations. The Siberian Transport University Bulletin. 2017;4;18–25. (In Russ.) EDN: ZWDQBR
  8. Yashnov AN, Baranov TM. Monitoring of Dynamic Behavior of Bridge Across the Angara in Irkutsk. Vestnik of Tomsk state university of architecture and building. 2017;(1):199-209. (In Russ.) Accessed: 20.04.2024. Available from: https://vestnik.tsuab.ru/jour/article/view/284/285
  9. Belyi A, Osadchy G, Dolinskiy K. Practical Recommendations for Controlling of Angular Displacements of High-Rise and Large Span Elements of Civil Structures In: Proceedings of 16th IEEE East-West Design & Test Symposium (EWDTS`2018), 2018 Sept 14–17; Kazan, Russia. IEEE; 2018:176–183. doi: 10.1109/EWDTS.2018.8524743
  10. Bryn MYa, Nikitchin AA, Tolstov EG. Geodesic monitoring of railway transport infrastructure objects. Transport Rossijskoj Federacii. 2010;4 (29);58–60. (In Russ.) EDN: NAXYBX
  11. Bryn MYa, Tolstov EG, Nikitchin AA, et al. Geodetic Monitoring of Cable-Stayed Bridge Deformation on the Basis of GNSS Technologies. Proceedings of Petersburg Transport University. 2009;2(19):120–128. (In Russ.) EDN: JTGPFD
  12. Belyi AA, Belov AA, Jashhenko AI, Antonyuk AA. Integralny monitoring mosta Aleksandra Nevskogo. Putevoi navigator. 2020;45(71);38–45. (In Russ.) EDN: ZDBIAB
  13. Garamov OV. Dlitel’nyi pribornyi monitoring avtodorozhnykh mostov. Problemy i perspektivy. Proceedings of Petersburg Transport University. 2004;1;27–31 (In Russ.) EDN: LRHUMR
  14. Syrkov AV. Puti razvitija avtomatizirovannyh sistem jekspluatacii i soderzhanija avtodorozhnyh iskusstvennyh sooruzhenij. Avtomatizacija v promyshlennosti. 2014;2;34-38. (In Russ.) EDN: RVDMQP
  15. Efanov DV. Funkcionalniy kontroli monitoring ustrojstv zheleznodorozhnoj avtomatiki i telemehaniki. St. Petersburg: PGUPS; 2016. (In Russ.)
  16. Syrkov AV, Krutikov OV. Optimizacija zhiznennogo cikla mosta na ostrov Russkij vo Vladivostoke sredstvami analiza riskov i monitoring. Avtomatizacija v promyshlennosti. 2012;9;45–50. (In Russ.) EDN: PCNRCP
  17. Belyi AA, Belov AA, Osadchik GV, Dolinsky KYu. Automation of technical condition management process of St. Petersburg artificial constructions with the usage of structural health monitoring tools. Automation on Transport. 2018;4;3;380–406. (In Russ) EDN: YOTBML
  18. Makhonko AA, Lazarev YuG, Antonyuk AA. Structural approach to assessing the performance of the monitoring system of engineering structures of the cable-stayed bridge over the Petrovsky Canal in the construction of the western speed diameter highway in St. Petersburg. Proceedings of Petersburg Transport University. 2024;21(2):421–431. (In Russ.) doi: 10.20295/1815-588X-2024-2-421-431
  19. Makhonko AA, Lazarev YG. Vybor sposoba fil’tracii dannyh akselerometrov sistemy monitoringa inzhenernyh konstrukcij vantovogo mosta cherez Petrovskij kanal v stvore avtomobil’noj dorogi «Zapadnyj skorostnoj diametr» v g. Sankt-Peterburge. Putevoi navigator. 2024;59(85);66–73. (In Russ.) EDN: DPGFVG

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of accelerometers location on the cable-stayed bridge over the Petrovsky Canal

Download (86KB)
3. Fig. 2. Graph of change of vibration accelerations on the pylon at exceeding the limit values

Download (164KB)
4. Fig 3. Graph of change of vibration accelerations on the V-12 pylon obtained from accelerometer A2

Download (269KB)
5. Fig 4. Probability density function of random variables for the signal from accelerometer A2

Download (93KB)
6. Fig 5. Graph of the change in vibration accelerations on the V-13 pylon obtained from accelerometer A5

Download (324KB)
7. Fig. 6. Probability density function of random variables for the signal from accelerometer A5

Download (94KB)
8. Fig. 7. Graph of change of vibration accelerations on the V-12 pylon obtained from accelerometer A2

Download (173KB)
9. Fig. 8. Probability density function of random variables for the signal from accelerometer A2

Download (81KB)
10. Fig. 9. Results diagram. Percentage ratio of the number of system activations between accelerometers A2 and A5

Download (29KB)
11. Fig. 10. Results diagram. Percentage ratio of the number of system activations by season

Download (37KB)
12. Fig. 11. Results diagram. Percentage ratio of the number of system activations by time of day

Download (39KB)
13. Fig. 12. Wind rose by 1 triggering group (general)

Download (104KB)
14. Fig. 13. Wind rose by 1 triggering group (accelerometer A2)

Download (99KB)
15. Fig. 14. Wind rose by 1 triggering group (accelerometer A5)

Download (106KB)

Copyright (c) 2024 Makhonko A.A., Lazarev Y.G., Antonyuk A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).