儿童髌骨不稳定的临床与MRI影像学表现
- 作者: Lukyanov S.A.1, Zorin V.I.1,2
-
隶属关系:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after I.I. Mechnikov
- 期: 卷 13, 编号 2 (2025)
- 页面: 145-153
- 栏目: Clinical studies
- URL: https://journal-vniispk.ru/turner/article/view/312533
- DOI: https://doi.org/10.17816/PTORS678328
- EDN: https://elibrary.ru/ESAPBY
- ID: 312533
如何引用文章
详细
论证。髌骨不稳定是指髌骨相对于股骨滑车沟发生反复性脱位或半脱位的状态。该病是儿童膝关节最常见的疾病之一。骨性结构与软组织结构共同作为髌骨的稳定器,任一结构的改变均可能成为导致不稳定的原因。对于髌骨不稳定患儿,磁共振成像所提供的髌股关节区域骨软骨及软组织结构状态的信息具有重要的实用价值,且可与临床表现进行对照分析。
目的:评估儿童髌骨不稳定患者髌股关节区磁共振成像的主要表现及其临床特征。
材料与方法。分析髌骨不稳定患者与前交叉韧带损伤患者的流行病学资料、临床数据及磁共振成像结果。共有52例主组患儿和44例前交叉韧带损伤的对照组患儿符合纳入标准。年龄分布无统计学显著差异。
结果。在Wiberg髌骨类型、脱位预感和髌骨过度活动度方面,各组之间存在显著差异。在患者的股骨滑车外侧倾斜角度、滑车窝深度以及脱位预感和髌骨过度活动度等临床表现方面也观察到统计学显著差异(p < 0.001)。
结论。股骨滑车发育不良是促使儿童患者出现髌骨不稳定的重要因素。本研究证实,表征股骨滑车发育不良的指标在儿童髌骨不稳定中具有统计学显著差异,且该因素与临床表现之间存在相关性。
作者简介
Sergey A. Lukyanov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
编辑信件的主要联系方式.
Email: Sergey.lukyanov95@yandex.ru
ORCID iD: 0000-0002-8278-7032
SPIN 代码: 3684-5167
MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgVyacheslav I. Zorin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov
Email: zoringlu@yandex.ru
ORCID iD: 0000-0002-9712-5509
SPIN 代码: 4651-8232
MD, PhD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, Saint Petersburg; Saint Petersburg参考
- Adachi N. Diagnosis and treatment of patellar instability. Orthop J Sports Med. 2024;12(10_suppl3):2325967124S00382. doi: 10.1177/2325967124S00382 EDN: MFPYIA
- Poorman MJ, Talwar D, Sanjuan J, et al. Increasing hospital admissions for patellar instability: a national database study from 2004 to 2017. Phys Sportsmed. 2020;48(2):215–221. doi: 10.1080/00913847.2019.1680088
- Fithian DC, Paxton EW, Stone ML, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32(5):1114–1121. doi: 10.1177/0363546503260788
- Colvin AC, West RV. Patellar instability. J Bone Joint Surg Am. 2008;90(12):2751–2762. doi: 10.2106/JBJS.H.00211
- Jayne C, Mavrommatis S, Shah AD, et al. Risk factors and treatment rationale for patellofemoral instability in the pediatric population. J Pediatr Orthop Soc North Am. 2024;6:100015. doi: 10.1016/j.jposna.2024.100015 EDN: GMHSBX
- Kapur S, Wissman RD, Robertson M, et al. Acute knee dislocation: review of an elusive entity. Curr Probl Diagn Radiol. 2009;38(6):237–250. doi: 10.1067/j.cpradiol.2008.06.001
- Buchner M, Baudendistel B, Sabo D, Schmitt H. Acute traumatic primary patellar dislocation: long-term results comparing conservative and surgical treatment. Clin J Sport Med. 2005;15(2):62–66. doi: 10.1097/01.jsm.0000157315.10756.14
- Meyers AB, Laor T, Sharafinski M, Zbojniewicz AM. Imaging assessment of patellar instability and its treatment in children and adolescents. Pediatr Radiol. 2016;46(5):618–636. doi: 10.1007/s00247-015-3520-8 EDN: YTKAFJ
- Pooley RA. Fundamental Physics of MR Imaging. RadioGraphics. 2005;25(4):1087–1099. doi: 10.1148/rg.254055027
- Association of Traumatologists-Orthopedists of Russia. Clinical guidelines “Patellar dislocation (adults, children)”. Ministry of Health of Russia, 2024. Available from: https://cr.minzdrav.gov.ru/view-cr/657_2 (In Russ.)
- Nacey NC, Geeslin MG, Miller GW, Pierce JL. Magnetic resonance imaging of the knee: An overview and update of conventional and state of the art imaging. Magn Reson Imaging. 2017;45(5):1257–1275. doi: 10.1002/jmri.25620
- Carrillon Y, Abidi H, Dejour D, et al. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216(2):582–585. doi: 10.1148/radiology.216.2.r00au07582
- Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. RadioGraphics. 2010;30(4):961–981. doi: 10.1148/rg.304095755
- Pfirrmann CWA, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216(3):858–864. doi: 10.1148/radiology.216.3.r00se38858
- Wilcox JJ, Snow BJ, Aoki SK, et al. Does landmark selection affect the reliability of tibial tubercle-trochlear groove measurements using MRI? Clin Orthop Relat Res. 2012;470(8):2253–2260. doi: 10.1007/s11999-012-2269-8
- Charles MD, Haloman S, Chen L, et al. Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med. 2013;41(2):374–384. doi: 10.1177/0363546512472441
- Joseph SM, Cheng C, Solomito MJ, Pace JL. Patellar height: comparison of measurement techniques and correlation with other pathoanatomic measures of patellar instability. Orthop J Sports Med. 2019;7(3_suppl):2325967119S00176. doi: 10.1177/2325967119S00176
- Trasolini NA, Serino J, Dandu N, Yanke AB. Treatment of proximal trochlear dysplasia in the setting of patellar instability: an arthroscopic technique. Arthrosc Tech. 2021;10(10):e2253–e2258. doi: 10.1016/j.eats.2021.05.027 EDN: RTJKWN
- Djuricic G, Milanovic F, Ducic S, et al. Morphometric parameters and mri morphological changes of the knee and patella in physically active adolescents. Medicina. 2023;59(2):213. doi: 10.3390/medicina59020213 EDN: NEFFUA
- Steensen RN, Bentley JC, Trinh TQ, et al. The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med. 2015;43(4):921–927. doi: 10.1177/0363546514563904
- Joseph SM, Cheng C, Solomito MJ, Pace JL. Lateral trochlear inclination angle: measurement via a 2-image technique to reliably characterize and quantify trochlear dysplasia. Orthop J Sports Med. 2020;8(10):2325967120958415. doi: 10.1177/2325967120958415 EDN: UMSZKS
- Paiva M, Blønd L, Hölmich P, et al. Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):746–755. doi: 10.1007/s00167-017-4520-z EDN: WXSYJR
补充文件
