Neurological disorders associated with glutamic acid decarboxylase (GAD) antibodies: clinical characteristics and short-term outcomes in a Russian cohort patients
- Authors: Chekanova E.О.1, Nuzhnyi E.P.1, Fedotova E.Y.1, Shalimanova E.V.1, Golovneva E.A.1, Zakharova M.N.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 80, No 1 (2025)
- Pages: 11-26
- Section: NEUROLOGY AND NEUROSURGERY: CURRENT ISSUES
- URL: https://journal-vniispk.ru/vramn/article/view/310187
- DOI: https://doi.org/10.15690/vramn18025
- ID: 310187
Cite item
Abstract
Background. Glutamate decarboxylase (GAD) antibody-spectrum diseases (GAD-ASD) are a group of relatively rare immune-mediated neurological disorders that most commonly present by such syndromes as cerebellar ataxia (СA), stiff person syndrome (SPS), limbic encephalitis (LE), epilepsy (E) and variants of their combination (overlap syndromes). The domestic literature contains descriptions of individual cases of GAD-ASD; cohort studies of GAD-ASD have not been conducted in Russia previously. Aims — to analyze clinical features and short-term outcomes in different phenotypes of GAD-ASD in a one-center cohort of Russian patients. Methods. The study was conducted between 2018 and 2024 at Research Center of Neurology (Moscow, Russia). The object of the study were 40 patients with a verified diagnosis of GAD-ASD. An assessment of the clinical picture, the results of blood and cerebrospinal fluid (CSF) laboratory tests, MRI and neurophysiological studies were carried out, the data of treatment and patient’s follow-up were analyzed. Results. Most patients were female (85%). The median age at symptom onset was 54 years (range: 18–74 years), the duration of the disease was 40.5 months (range: 1 month — 14 years). The diseases phenotypes were typical for GAD-ASD: SPS (42.5%), MA (30%), LE/E (15%), overlap syndrome (12.5%). GAD antibodies were detected in 100% of the blood and CSF samples examined. 1 case (SPS) corresponded to a “probable” paraneoplastic syndrome; 3 cases (LE, SPS, MA+E) were associated with COVID-19. 62.5% of patients had another concomitant autoimmune disease. Inflammatory changes in the CSF were rare: increased protein — 3.4%, oligoclonal bands — 10%. On brain MRI, focal changes were observed in 5%, signs of atrophy — in 20%. Immunotherapy was performed in 80% patients, in 80% of them — long-term immunosuppression. Treatment response was observed in 92.1% and didn’t differ among GAD-ASD phenotypes. 65.8% of patients achieved improvement with a decrease in disability, 1 patient (2.6%) achieved complete recovery. Conclusions. In Russia, a cohort of patients with GAD-ASD has been characterized for the first time. In Russian patients, disease phenotypes were typical for GAD-autoimmunity, the most common of which was SPS. Most patients respond to immunotherapy, but recoveries are rare, indicating a chronic course of GAD-ASD.
Full Text
##article.viewOnOriginalSite##About the authors
Ekaterina О. Chekanova
Research Center of Neurology
Author for correspondence.
Email: chekanova@neurology.ru
ORCID iD: 0000-0001-5442-0877
SPIN-code: 9319-8156
MD, PhD
Russian Federation, MoscowEvgeniy P. Nuzhnyi
Research Center of Neurology
Email: enuzhny@mail.ru
ORCID iD: 0000-0003-3179-7668
SPIN-code: 5571-3386
MD
Russian Federation, MoscowEkaterina Yu. Fedotova
Research Center of Neurology
Email: ekfed@mail.ru
ORCID iD: 0000-0001-8070-7644
SPIN-code: 3466-2212
MD, PhD
Russian Federation, MoscowElena V. Shalimanova
Research Center of Neurology
Email: elena.shalim@yandex.ru
ORCID iD: 0000-0003-1245-0095
SPIN-code: 6687-4334
MD, PhD
Russian Federation, MoscowEugenia A. Golovneva
Research Center of Neurology
Email: golovnyova@neurology.ru
ORCID iD: 0000-0003-3307-8472
SPIN-code: 5214-1318
MD, PhD Student
Russian Federation, MoscowMaria N. Zakharova
Research Center of Neurology
Email: zakharova@neurology.ru
ORCID iD: 0000-0002-1072-9968
SPIN-code: 4277-2860
MD, PhD, Professor
Russian Federation, MoscowReferences
- Solimena M, De Camilli P. Autoimmunity to glutamic acid decarboxylase (GAD) in Stiff–Man syndrome and insulin-dependent diabetes mellitus. Trends Neurosci. 1991;14(10):452–457. doi: https://doi.org/10.1016/0166-2236(91)90044-u
- Graus F, Saiz A, Dalmau J. GAD antibodies in neurological disorders — insights and challenges. Nat Rev Neurol. 2020;16(7):353–365. doi: https://doi.org/10.1038/s41582-020-0359-x
- Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990;347(6289):151–156. doi: https://doi.org/10.1038/347151a0
- Dade M, Berzero G, Izquierdo C, et al. Neurological Syndromes Associated with Anti-GAD Antibodies. Int J Mol Sci. 2020;21(10):3701. doi: https://doi.org/10.3390/ijms21103701
- Nakajima H, Nakamura Y, Inaba Y, et al. Neurologic disorders associated with anti-glutamic acid decarboxylase antibodies: A comparison of anti-GAD antibody titers and time-dependent changes between neurologic disease and type I diabetes mellitus. J Neuroimmunol. 2018;317:84–89. doi: https://doi.org/10.1016/j.jneuroim.2018.01.007
- Краснов М.Ю., Павлов Э.В., Ершова М.В., и др. Спектр неврологических синдромов, ассоциированных с антителами к глутаматдекарбоксилазе // Анналы клинической и экспериментальной неврологии. — 2015. — Т. 9. — № 4. — С. 37–41. [Krasnov MYu, Pavlov EV, Ershova MV, et al. The range of neurological syndromes associated with glutamic acid decarboxylase antibodies. Annals of Clinical and Experimental Neurology. 2015;9(4):37–41. (In Russ.)] doi: https://doi.org/10.17816/psaic82
- Нужный Е.П., Краснов М.Ю., Ахмадуллина Д.Р., и др. Атаксия, ассоциированная с антителами к глутаматдекарбоксилазе // Неврология, нейропсихиатрия, психосоматика. — 2020. — Т. 12. — № 5. — С. 66–70. [Nuzhnyi EP, Krasnov MYu, Akhmadullina DR, et al. Ataxia associated with anti-glutamic acid decarboxylase antibodies. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2020;12(5):66–70. (In Russ.)] doi: https://doi.org/10.14412/2074-2711-2020-5-66-70
- Graus F, Vogrig A, Muñiz-Castrillo S, et al. Updated Diagnostic Criteria for Paraneoplastic Neurologic Syndromes. Neurol Neuroimmunol Neuroinflamm. 2021;8(4):e1014. doi: https://doi.org/10.1212/NXI.0000000000001014
- Rada A, Bien CG. What is autoimmune encephalitis-associated epilepsy? Proposal of a practical definition. Epilepsia. 2023;64(9):2249–2255. doi: https://doi.org/10.1111/epi.17699
- Vlad B, Wang Y, Newsome SD, et al. Stiff Person Spectrum Disorders-An Update and Outlook on Clinical, Pathophysiological and Treatment Perspectives. Biomedicines. 2023;11(9):2500. doi: https://doi.org/10.3390/biomedicines11092500
- Daif A, Lukas RV, Issa NP, et al. Antiglutamic acid decarboxylase 65 (GAD65) antibody-associated epilepsy. Epilepsy Behav. 2018;80:331–336. doi: https://doi.org/10.1016/j.yebeh.2018.01.021
- McKeon A, Robinson MT, McEvoy KM, et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol. 2012;69(2):230–238. doi: https://doi.org/10.1001/archneurol.2011.991
- Wang Y, Hu C, Aljarallah S, et al. Expanding clinical profiles and prognostic markers in stiff person syndrome spectrum disorders. J Neurol. 2024;271(4):1861–1872. doi: https://doi.org/10.1007/s00415-023-12123-0
- Falip M, Carreño M, Miró J, et al. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur J Neurol. 2012;19(6):827–833. doi: https://doi.org/10.1111/j.1468-1331.2011.03609.x
- Hadjivassiliou M, Martindale J, Shanmugarajah P, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017;88(4):301–309. doi: https://doi.org/10.1136/jnnp-2016-314863
- Aguiar TS, Fragoso A, Albuquerque CR, et al. Clinical characteristics of patients with cerebellar ataxia associated with anti-GAD antibodies. Arq Neuropsiquiatr. 2017;75(3):142–146. doi: https://doi.org/10.1590/0004-282X20170011
- Budhram A, Sechi E, Flanagan EP, et al. Clinical spectrum of high-titre GAD65 antibodies. J Neurol Neurosurg Psychiatry. 2021;92(6):645–654. doi: https://doi.org/10.1136/jnnp-2020-325275
- Kuo YC, Lin CH. Clinical spectrum of glutamic acid decarboxylase antibodies in a Taiwanese population. Eur J Neurol. 2019;26(11):1384–1390. doi: https://doi.org/10.1111/ene.14005
- Madlener M, Strippel C, Thaler FS, et al. Glutamic acid decarboxylase antibody-associated neurological syndromes: Clinical and antibody characteristics and therapy response. J Neurol Sci. 2023;445:120540. doi: https://doi.org/10.1016/j.jns.2022.120540
- Muñoz-Lopetegi A, de Bruijn MAAM, Boukhrissi S, et al. Neurologic syndromes related to anti-GAD65: Clinical and serologic response to treatment. Neurol Neuroimmunol Neuroinflamm. 2020;7(3):e696. doi: https://doi.org/10.1212/NXI.0000000000000696
- Bai L, Ren H, Liang M, et al. Neurological disorders associated with glutamic acid decarboxylase 65 antibodies: Clinical spectrum and prognosis of a cohort from China. Front Neurol. 2022;13:990553. doi: https://doi.org/10.3389/fneur.2022.990553
- Shiba T, Morino Y, Tagawa K, et al. Onset of diabetes with high titer anti-GAD antibody after IFN therapy for chronic hepatitis. Diabetes Res Clin Pract. 1995;30(3):237–241. doi: https://doi.org/10.1016/0168-8227(95)01188-9
- Ariño H, Höftberger R, Gresa-Arribas N, et al. Paraneoplastic Neurological Syndromes and Glutamic Acid Decarboxylase Antibodies. JAMA Neurol. 2015;72(8):874–881. doi: https://doi.org/10.1001/jamaneurol.2015.0749
- Saffari P, Aliakbar R, Haritounian A, et al. A Sharp Rise in Autoimmune Encephalitis in the COVID-19 Era: A Case Series. Cureus. 2023;15(2):e34658. doi: https://doi.org/10.7759/cureus.34658
- Ariño H, Gresa-Arribas N, Blanco Y, et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol. 2014;71(8):1009–1016. doi: https://doi.org/10.1001/jamaneurol.2014.1011
- Dubey D, Pittock SJ, McKeon A. Antibody Prevalence in Epilepsy and Encephalopathy score: Increased specificity and applicability. Epilepsia. 2019;60(2):367–369. doi: https://doi.org/10.1111/epi.14649
- Joubert B, Belbezier A, Haesebaert J, et al. Long-term outcomes in temporal lobe epilepsy with glutamate decarboxylase antibodies. J Neurol. 2020;267(7):2083–2089. doi: https://doi.org/10.1007/s00415-020-09807-2
- Jesus-Ribeiro J, Bozorgi A, Alkhaldi M, et al. Autoimmune musicogenic epilepsy associated with anti-glutamic acid decarboxylase antibodies and Stiff-person syndrome. Clin Case Rep. 2019;8(1):61–64. doi: https://doi.org/10.1002/ccr3.2538
- Dalakas MC, Rakocevic G, Dambrosia JM, et al. A double-blind, placebo-controlled study of rituximab in patients with stiff person syndrome. Ann Neurol. 2017;82(2):271–277. doi: https://doi.org/10.1002/ana.25002
- Yi J, Dalakas MC. Long-term Effectiveness of IVIg Maintenance Therapy in 36 Patients with GAD Antibody-Positive Stiff-Person Syndrome. Neurol Neuroimmunol Neuroinflamm. 2022;9(5):e200011. doi: https://doi.org/10.1212/NXI.0000000000200011
- Dalakas MC, Fujii M, Li M, et al. High-dose intravenous immune globulin for stiff-person syndrome. N Engl J Med. 2001;345(26):1870–1876. doi: https://doi.org/10.1056/NEJMoa01167
- Jaafar F, Haddad L, Koleilat N, et al. Super refractory status epilepticus secondary to anti-GAD antibody encephalitis successfully treated with aggressive immunotherapy. Epilepsy Behav Rep. 2020;14:100396. doi: https://doi.org/10.1016/j.ebr.2020.100396
- Dimova P, Minkin K. Case Report: Multisystem Autoimmune and Overlapping GAD65-Antibody-Associated Neurological Disorders with Beneficial Effect of Epilepsy Surgery and Rituximab Treatment. Front Neurol. 2022;12:756668. doi: https://doi.org/10.3389/fneur.2021.756668
- Hansen N, Widman G, Witt JA, et al. Seizure control and cognitive improvement via immunotherapy in late onset epilepsy patients with paraneoplastic versus GAD65 autoantibody-associated limbic encephalitis. Epilepsy Behav. 2016;65:18–24. doi: https://doi.org/10.1016/j.yebeh.2016.10.016
Supplementary files
