Supremum of the Perron Exponent on the Solutions of a Linear System with Slowly Growing Coefficients is Metrically Typical


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove that if the Lyapunov exponent of the norm of the coefficient matrix of a linear differential system is nonpositive, then the supremum of Perron exponents of the solutions issuing from any given affine subspace is attained and the set of initial vectors of solutions with the maximum Perron exponent has full Lebesgue measure in the subspace.

作者简介

A. Gargyants

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: gaaaric@gmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018