Supremum of the Perron Exponent on the Solutions of a Linear System with Slowly Growing Coefficients is Metrically Typical
- 作者: Gargyants A.G.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 54, 编号 8 (2018)
- 页面: 993-999
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154809
- DOI: https://doi.org/10.1134/S0012266118080013
- ID: 154809
如何引用文章
详细
We prove that if the Lyapunov exponent of the norm of the coefficient matrix of a linear differential system is nonpositive, then the supremum of Perron exponents of the solutions issuing from any given affine subspace is attained and the set of initial vectors of solutions with the maximum Perron exponent has full Lebesgue measure in the subspace.
作者简介
A. Gargyants
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: gaaaric@gmail.com
俄罗斯联邦, Moscow, 119991
补充文件
