Supremum of the Perron Exponent on the Solutions of a Linear System with Slowly Growing Coefficients is Metrically Typical


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We prove that if the Lyapunov exponent of the norm of the coefficient matrix of a linear differential system is nonpositive, then the supremum of Perron exponents of the solutions issuing from any given affine subspace is attained and the set of initial vectors of solutions with the maximum Perron exponent has full Lebesgue measure in the subspace.

Авторлар туралы

A. Gargyants

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: gaaaric@gmail.com
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018