Supremum of the Perron Exponent on the Solutions of a Linear System with Slowly Growing Coefficients is Metrically Typical
- Авторы: Gargyants A.G.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 54, № 8 (2018)
- Страницы: 993-999
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154809
- DOI: https://doi.org/10.1134/S0012266118080013
- ID: 154809
Цитировать
Аннотация
We prove that if the Lyapunov exponent of the norm of the coefficient matrix of a linear differential system is nonpositive, then the supremum of Perron exponents of the solutions issuing from any given affine subspace is attained and the set of initial vectors of solutions with the maximum Perron exponent has full Lebesgue measure in the subspace.
Об авторах
A. Gargyants
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: gaaaric@gmail.com
Россия, Moscow, 119991
Дополнительные файлы
