Supremum of the Perron Exponent on the Solutions of a Linear System with Slowly Growing Coefficients is Metrically Typical
- Autores: Gargyants A.G.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 54, Nº 8 (2018)
- Páginas: 993-999
- Seção: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154809
- DOI: https://doi.org/10.1134/S0012266118080013
- ID: 154809
Citar
Resumo
We prove that if the Lyapunov exponent of the norm of the coefficient matrix of a linear differential system is nonpositive, then the supremum of Perron exponents of the solutions issuing from any given affine subspace is attained and the set of initial vectors of solutions with the maximum Perron exponent has full Lebesgue measure in the subspace.
Sobre autores
A. Gargyants
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: gaaaric@gmail.com
Rússia, Moscow, 119991
Arquivos suplementares
