Geochemistry of bottom sediments of Lake Peyungda (Tunguska Nature Reserve) and paleoclimatic reconstructions of the Arctic territories of Eastern Siberia
- 作者: Novikov V.S.1, Darin A.V.1, Babich V.V.1, Darin F.A.2, Rogozin D.Y.3
-
隶属关系:
- Institute of Geology And Mineralogy V. S. Sobolev SB RAS
- The Center for the Collective Complex “Siberian Ring Photon Source” of the Institute of Catalysis SB RAS
- cInstitute of Biophysics, SB RAS
- 期: 卷 69, 编号 5 (2024)
- 页面: 468-476
- 栏目: Articles
- URL: https://journal-vniispk.ru/0016-7525/article/view/272962
- DOI: https://doi.org/10.31857/S0016752524050045
- EDN: https://elibrary.ru/JBOXGE
- ID: 272962
如何引用文章
详细
Lake Peyungda annually contains layered bottom sediments (varves), which make it possible to build a reliable age model for the entire depth of the core. The age model was refined over the last century based on the presence of a layer of anomalous thickness associated with the fall of the Tunguska cosmic body (TCB) in June 1908. The results of scanning µXRF-SI (elemental analysis along core depth) were used for comparison with regional average annual weather observation data over time interval 1895–2000. to create a transfer function: average annual temperature as a function of the elemental composition of the dated layer of bottom sediment. Approximation of the obtained function to the depth of core sampling made it possible to reconstruct changes in regional temperature over the time interval of the last millennium with an annual time resolution. A comparison of the obtained reconstruction with literary reconstructions for the Arctic region over the past 1000 years shows the presence of general trends and extremes, which confirms the reliability of the results obtained.
全文:

作者简介
V. Novikov
Institute of Geology And Mineralogy V. S. Sobolev SB RAS
编辑信件的主要联系方式.
Email: novikovvs@igm.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
A. Darin
Institute of Geology And Mineralogy V. S. Sobolev SB RAS
Email: novikovvs@igm.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
V. Babich
Institute of Geology And Mineralogy V. S. Sobolev SB RAS
Email: novikovvs@igm.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
F. Darin
The Center for the Collective Complex “Siberian Ring Photon Source” of the Institute of Catalysis SB RAS
Email: novikovvs@igm.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
D. Rogozin
cInstitute of Biophysics, SB RAS
Email: novikovvs@igm.nsc.ru
俄罗斯联邦, Krasnoyarsk, 660036
参考
- Дарьин А.В., Бабич В.В., Калугин И.А., Маркович Т.И., Рогозин Д.Ю., Мейдус А.В., Дарьин Ф.А., Ракшун Я.В., Сороколетов Д.С. (2019) Исследование геохимических особенностей годовых слоев в донных осадках пресноводных озер методом рентгенофлуоресцентного микроанализа с возбуждением синхротронным излучением // Известия Российской академии наук. Серия физическая. 83 (11), 1572–1575.
- Дарьин А.В., Гольдберг Е.Л., Калугин И.А., Федорин М.А., Золотарев К.В., Максимова Н.В. (2003) Отношение интенсивностей упруго- и неупругорассеянного на образце синхротронного излучения — климатически коррелированный палеосигнал в историческом слое (1860–1996 гг.) донных осадков оз.Телецкое. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 12, 53–55.
- Дарьин А.В., Калугин И.А., Бабич В.В., Маркович Т.И., Грачев А.М., Дарьин Ф.А., Ракшун Я.В., Сороколетов Д.С. (2019) Поиск годично стратифицированных донных осадков в озерах Горного Алтая методом рентгенофлуоресцентного микроанализа с использованием синхротронного излучения. Известия Российской академии наук. Серия физическая. 83, 243–246. https://doi.org/10.1134/S0367676519020108.
- Дарьин А.В., Рогозин Д.Ю., Мейдус А.В., Бабич В.В., Калугин И.А., Маркович Т.И., Ракшун Я.В., Дарьин Ф.А., Сороколетов Д.С., Гогин А.А., Сенин Р.А., Дегерменджи А.Г. (2020) Следы Тунгусского события 1908 г. в донных осадках озера Заповедное по данным сканирующего РФА-СИ. ДАН. Науки о Земле. 492 (2). 61–65.
- Клименко В.В. (2009) Климат: непрочитанная глава истории. Москва: Издательский дом МЭИ.
- Babich V.V., Rudaya N.A., Kalugin I.A., Darin A.V. (2015) Complex use of the geochemical features of bottom deposits and pollen records for paleoclimate reconstructions (with lake Teletskoe, Altai Republic, as an example). Contemporary Problems of Ecology. 8, 405–413. https://doi.org/10.1134/S1995425515040022
- Bezrukova E.V., Abzaeva A.A., Letunova P.P., Kostrova S.S., Tarasov P.E., Kulagina N.V. (2011) Palynological study of Lake Kotokel’ bottom sediments (Lake Baikal Region). Russian Geology and Geophysics. 52 (4), 458–465. https://doi.org/10.1016/j.rgg.2011.03.008
- Boës X., Fagel N. (2009) Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. Journal of Paleolimnology. 39, 237–252. https://doi.org/10.1007/s10933-007-9119-9
- Brauer A. (2004) Annually Laminated Lake Sediments and Their Palaeoclimatic Relevance, In: Fischer, H., et al. The Climate in Historical Times. GKSS School of Environmental Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10313-5_7
- Darin A.V., Kalugin I.A., Rakshun Y.V. (2013) Scanning X-ray microanalysis of bottom sediments using synchrotron radiation from the BINP VEPP-3 storage ring. Bulletin of the Russian Academy of Sciences: Physics. 77, 182–184. https://doi.org/10.3103/S106287381302010X
- Darin A.V., Rakshun Y.V. (2013) Methodology for performing measurements in determining the elemental composition of rock samples by the method of X-RAY fluorescence analysis using synchrotron radiation from the VEPP-3 accessory. Data Analysis and Processing Systems. 2 (51), 112–118.
- Gunten L., D’Andrea W.J., Bradley R.S., Huang Y. (2012) Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions. Sci. Rep., 2, 609. https://doi.org/10.1038/srep00609
- Hanhijärvi S., Tingley M.P., Korhola A. (2013) Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years. Climate Dynamics. 41 (7–8), 2039–2060.
- Jones P.D., Briffa K.R., Osborn T.J., Lough J.M., Van Ommen T.D., et al. (2009) High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene. 19, 3–49.
- Klimenko V., Matskovsky V., Dahlmann D. (2014) Multi-archive temperature reconstruction of the Russian Arctic for the past two millennia. Geography, environment, sustainability. 7 (1), 16–29. https://doi.org/10.24057/2071-9388-2014-7-1-16-29
- Lamoureux S.F.. (2001) Varve chronology techniques. Developments in Paleoenvironmental Research (DPER). 2, 247–260.
- P. Francus, Image Analysis, Sediments and Paleoenvironments. (2004) https://doi.org/10.1007/1–4020–2122–4
- PAGES2k Consortium. (2013) Continental-scale temperature variability during the last two millennia. Nature Geoscience. 6, 339–346.
- Rogozin D.Y., Krylov P.S., Dautov A.N. et al. (2023) Morphology of Lakes of the Central Tunguska Plateau (Krasnoyarsk Krai, Evenkiya): New Data on the Problem of the Tunguska Event of 1908. Dokl. Earth Sc. 510, 307–311. https://doi.org/10.1134/S1028334X23600044
- Screen J., Simmonds I. (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature. 464, 1334–1337. https://doi.org/10.1038/nature09051
- Semenov V.A. (2021) Modern Arctic Climate Research: Progress, Change of Concepts, and Urgent Problems. Izv. Atmos. Ocean. Phys. 57, 18–28. https://doi.org/10.1134/S0001433821010114
- Serreze M.C., Barry R.G. (2011) Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change. 77 (1–2), 85–96. https://doi.org/10.1016/j.gloplacha.2011.03.004
- Shi F. (2012) Multiproxy surface air temperature field reconstruction for the Arctic covering the past millennium. Quaternary International. 54 (279–280), 446. https://doi: 10.3354/cr01112
- Shichi K., Takahara H., Krivonogov S., Bezrukova E., Kashiwaya K., Takehara A., Nakamura T. (2009) Late Pleistocene and Holocene vegetation and climate records from Lake Kotokel, central Baikal region. Quaternary International. 205, 98–110. https://doi.org/10.1016/j.quaint.2009.02.005.
- Sturm M. (1979) Origin and composition of clastic varves. Moraines and Varves. Rotterdam: A.A. Balkema, 281–285.
- Takahara H., Shinya S., Harrison S., Miyoshi N., Morita Y., Uchiyama T. (2000) Pollen-based reconstructions of Japanese biomes at 0,6000 and 18,000 14C yr BP. Journal of Biogeography. 27, 665–683. https://doi.org/10.1046/j.1365-2699.2000.00432.x
- Zi-Chen L. I., Wen-Bin S. U. N., LIANG C. X., Xu-Huang X. I. N. G., Qing-Xiang L. I. (2023) Arctic warming trends and their uncertainties based on surface temperature reconstruction under different sea ice extent scenarios. Advances in Climate Change Research. 14 (3), 335–346. https://doi.org/10.1016/j.accre.2023.06.003
补充文件
