Trace element composition of zircons from rapakivi granites of the Gubanov intrusion, the Wiborg massif, as a reflection of the fluid saturation of the melt

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

SEM-EDS and SIMS in-situ methods were used to study the trace element composition of zircon from rapakivi granites of the Wiborg massif: vyborgites of the second phase, trachytoid granites of the third phase, as well as from the aplitic granites of their contact zone. All three rock varieties are available for study in the building stone quarry of the Vozrozhdenie deposit (Karelian Isthmus), where are the granites of the Gubanov intrusion mined. The zircon composition from all rock types show traces of active fluid impact. This impact is manifested both at the level of zircon internal structure (dark zones and areas on BSE-image) and in zircon composition – in terms of trace and rare-earth elements, the content of which significantly increases in the altered zones that differ in the character of coloring in BSE. The total REE content in the studied zircon exceeds 9400 ppm. For zircon from granites of the third phase, the distribution spectra in the LREE and HREE region with a counter slope, which has the character of the «bird’s wings» profile (SmN/LaN<1), were established. In the discriminative diagrams, a significant part of the analyzed points falls into the field of hydrothermal zircon. It is possible to assume that the source of fluid that affected zircon in all types of granites were fluid-saturated melts from which trachytoid granites of the third phase crystallized.

全文:

受限制的访问

作者简介

I. Rogova

Empress Catherine II St. Petersburg Mining University

编辑信件的主要联系方式.
Email: i.l.o.n.a.borisova@yandex.ru
俄罗斯联邦, 21st Line, St. Petersburg, 199106

V. Stativko

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; Empress Catherine II St. Petersburg Mining University

Email: i.l.o.n.a.borisova@yandex.ru
俄罗斯联邦, Makarova emb. 2, St. Petersburg, 199034; 21st Line, St. Petersburg, 199106

D. Petrov

Empress Catherine II St. Petersburg Mining University

Email: i.l.o.n.a.borisova@yandex.ru
俄罗斯联邦, 21st Line, St. Petersburg, 199106

S. Skublov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; Empress Catherine II St. Petersburg Mining University

Email: i.l.o.n.a.borisova@yandex.ru
俄罗斯联邦, Makarova emb. 2, St. Petersburg, 199034; 21st Line, St. Petersburg, 199106

参考

  1. Беляев А. М., Львов Б. К. (1981) Минералого-геохимическая специализация гранитов рапакиви Выборгского массива. Вестник ЛГУ. 6, 15–24.
  2. Бибикова Е. В., Шилобреева С. Н., Грачева Т. В., Макаров В. А. (1995) Экспериментальное исследование поведения уран-свинцовой изотопной системы цирконов при воздействии на них расплава при различных физико-химических условиях. Геохимия. (8), 1100–1109.
  3. Булах А. Г., Попов Г. Н., Янсон С. Ю., Иванов М. А. (2021) Новые данные о гранитном постаменте памятника Петру I «Медный всадник» в Санкт-Петербурге. Записки Горного института. 248, 180–189.
  4. Великославинский Д. А., Биркис А.П, Богатиков О. А. и др. (1978) Анортозит-рапакивигранитная формация: Восточно-Европейская платформа. Л.: Наука. 296.
  5. Владимиров А. Г., Изох А. Э., Поляков Г. В., Бабин Г. А., Мехоношин А. С., Крук Н. Н., Хлестов В. В., Хромых С. В., Травин А. В., Юдин Д. С., Шелепаев Р. А. (2013). Габбро-гранитные интрузивные серии и их индикаторное значение для геодинамических реконструкций. Петрология. 21(2), 177–201.
  6. Кудряшов Н. М., Удоратина О. В., Калинин А. А., Лялина Л. М., Селиванова Е. А., Гроув М. Д. (2022) U-Pb (SHRIMP-RG) возраст циркона из редкометалльных (Li, Cs) пегматитов месторождения Охмыльк зеленокаменного пояса Колмозеро-Воронья (северо-восток Фенноскандинавского щита). Записки Горного института. 255, 448–454.
  7. Ларин А. М. (2011) Граниты рапакиви и ассоциирующие породы. СПб.: Наука. 402.
  8. Левашова Е. В., Попов В. А., Левашов Д. С., Румянцева Н. А. (2022) Распределение редких элементов по секторам и зонам роста в цирконе из миаскитового пегматита Вишневогорского массива, Южный Урал. Записки Горного института, 254, 136–148.
  9. Левашова Е. В., Скублов С. Г., Ли С.-Х., Кривдик С. Г., Возняк Д. К., Кульчицкая А. А., Алексеев В. И. (2016) Геохимия и U-Pb возраст циркона из редкометалльных месторождений безнефелиновых сиенитов Украинского щита. Геология рудных месторождений. 56(3), 267–291.
  10. Левковский Р. З. (1975) Рапакиви. Л.: Недра. 223.
  11. Марин Ю. Б. (2020) О минералогических исследованиях и использовании минералогической информации при решении проблем петро- и рудогенеза. Записки Российского минералогического общества. 4, 1–15.
  12. Скублов С. Г., Золотарева Г. С. (2012) Геохимия циркона из коры выветривания гранитов Павловского выступа, Воронежский кристаллический массив. Записки Российского минералогического общества. 1, 115–121.
  13. Скублов С.Г, Левашова Е. В., Мамыкина М. Е., Гусев Н. И., Гусев А. И. (2024) Полифазный Белокурихинский массив гранитов, Горный Алтай: изотопно-геохимическое исследование циркона. Записки Горного института. 268, 552—575.
  14. Федотова А. А., Бибикова Е. В., Симакин С. Г. (2008) Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях. Геохимия. 9, 980–997.
  15. Fedotova A. A., Bibikova E. V., Simakin S. G. (2008) Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Int. 46(9), 912–927.
  16. Шебанов А. Д. (1992) Типоморфные особенности циркона из трахитоидного гранита-рапакиви (Выборгский массив). Записки Российского минералогического общества. 4, 83–88.
  17. Anderson A. J., Wirth R., Thomas R. (2008) The alteration of metamict zircon and its role in the remobilization of high-field-strength elements in the Georgeville Granite. Nova Scotia. Can. Mineral. 46, 1–18.
  18. Balan E., Trocellier P., Jupille J., Fritsch E., Muller J. P., Calas G. (2001) Surface chemistry of weathered zircons. Chem. Geol. 181, 13–22.
  19. Bouvier A. S., Ushikubo T., Kita N. T., Cavosie A. J., Kozdon R., Valley J. W. (2012) Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contrib. Mineral. Petrol. 163, 745–768.
  20. Cao J., Yang X., Du J., Wu Q., Kong H., Li H., Wan Q., Xi X., Gong Y., Zhao H. (2018) Formation and geodynamic implication of the Early Yanshanian granites associated with W–Sn mineralization in the Nanling range, South China: An overview. Int. Geol. Rev. 60, 1744–1771.
  21. Claiborne L. L., Miller C. F., Gualda G. A., Carley T. L., Covey A. K., Wooden J. L., Fleming M. A. (2018) Zircon as magma monitor: Robust, temperature‐dependent partition coefficients from glass and zircon surface and rim measurements from natural systems. Microstructural Geochronology: Planetary Records down to Atom Scale. Wiley, 1–33.
  22. Duan Z. P., Su H. M., Jiang S. Y. (2024) Zircon in tin granite as tracer for fluid metasomatism and Sn mineralization. Lithos. 474, 107597.
  23. Eden P. (1991) A specialized topaz-bearing rapakivi granite and associated mineralized greisen in the Ahvenisto complex, SE Finland. Bull. Geol. Soc. Fin. 63, 25–40.
  24. Ewing R. C., Meldrum A., Wang L., Weber W. J., Corrales L. R. (2003) Radiation effects in zircon. Rev. Mineral. Geochem. 53(1), 387–425.
  25. Fu B., Page F. Z., Cavosie A. J., Fournelle J., Kita N. T., Lackey J. S., Valley J. W. (2008) Ti-in-zircon thermometry: applications and limitations. Contrib. Mineral. Petrol. 156, 197–215.
  26. Geisler T., Schaltegger U., Tomaschek F. (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements. 3(1), 43–50.
  27. Geisler T., Pidgeon R. T., Kurtz R., Van Bronswijk W., Schleicher H. (2003) Experimental hydrothermal alteration of partially metamict zircon. Amer. Mineral. 88, 1496–1513.
  28. Grimes C. B., John B. E., Cheadle M. J., Mazdab F. K., Wooden J. L., Swapp S., Schwartz J. J. (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Mineral. Petrol. 158, 757–783.
  29. Haapala I. (1995) Metallogenese der Rapakivi-Granite. Mineral. Petrol. 54, 149–160.
  30. Haapala I., Rämö O. T., Frindt S. (2005) Comparison of Proterozoic and Phanerozoic rift-related basaltic-granitic magmatism. Lithos. 80, 1–32.
  31. Harley S. L., Kelly N. M. (2007) Zircon tiny but timely. Elements. 3(1), 13–18.
  32. Harlov D. E., Anczkiewicz R., Dunkley D. J. (2023) Metasomatic alteration of zircon at lower crustal PT conditions utilizing alkali-and F-bearing fluids: Trace element incorporation, depletion, and resetting the zircon geochronometer. Geochim. Cosmochim. Acta. 352, 222–235.
  33. Heinonen A., Mänttäri I., Rämö O. T., Andersen T., Larjamo K. (2016) A priori evidence for zircon antecryst entrainment in megacrystic Proterozoic granites. Geology. 44, 227–230.
  34. Heinonen A. P., Andersen T., Rämö O. T. (2010) Re-evaluation of rapakivi petrogenesis: Source constraints from the Hf isotope composition of zircon in the rapakivi granites and associated mafic rocks of southern Finland. J. Petrol. 51, 1687–1709.
  35. Heinonen A. P., Rämö O. T., Mänttäri I., Andersen T., Larjamo K. (2017) Zircon as a proxy for the magmatic evolution of Proterozoic ferroan granites; the Wiborg rapakivi granite batholith, SE Finland. J. Petrol. 58, 2493–2517.
  36. Hinton R. W., Upton B. G.J. (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta. 55, 3287–3302.
  37. Hoskin P. W. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta. 69, 637–648.
  38. Hoskin P. W., Schaltegger U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53(1), 27–62.
  39. Ivankina T. I., Zel I. Y., Petruzalek M., Rodkin M. V., Matveev M. A., Lokajicek T. (2020) Elastic anisotropy, permeability, and freeze-thaw cycling of rapakivi granite. Int. J. Rock Mech. Mining Sci. 136, 104541.
  40. Kirkland C. L., Smithies R. H., Taylor R. J.M., Evans N., McDonald B. (2015) Zircon Th/U ratios in magmatic environs. Lithos. 212, 397–414.
  41. Konyshev A. (2023) Natural experiment on the extraction and quenching of rapakivi-like magmas: Traces of interaction with the mafic melts and their derivatives, Salmi Batholith (Karelia, Russia). Minerals. 13, 527.
  42. Levashova E. V., Mamykina M. E., Skublov S. G., Galankina O. L., Li Q. L., Li X. H. (2023) Geochemistry (TE, REE, Oxygen) of zircon from leucogranites of the Belokurikhinsky Massif, Gorny Altai, as indicator of formation conditions. Geochem. Int. 61, 1323–1339.
  43. Levashova E. V., Skublov S. G., Zamyatin D. A., Li Q., Levashov D. S., Li X. (2024) Tetrad effect of rare earth element fractionation in zircon from the pegmatite of the Adui massif, Middle Urals. Geosciences. 14(1), 7.
  44. McDonough W.F., Sun S. S. (1995) The composition of the Earth. Chem. Geol. 120, 223–253.
  45. Nasdala L., Hanchar J. M., Kronz A., Whitehouse M. J. (2005) Long-term stability of alpha particle damage in natural zircon. Chem. Geol. 220, 83–103.
  46. Nasdala L., Pidgeon R. T., Wolf D., Irmer G. (1998) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Mineral. Petrol. 62, 1–27.
  47. Putnis A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral. Mag. 66, 689–708.
  48. Rämö O. T., Haapala I. (1995) One hundred years of rapakivi granite. Mineral. Petrol. 52, 129–185.
  49. Rämö O. T., Haapala I. (2005) Rapakivi granites. Developments in Precambrian geology. 14, 533–562.
  50. Rios S., Salje E. K., Zhang M., Ewing R. C. (2000) Amorphization in zircon: evidence for direct impact damage. J. Phys.: Condens. Matter. 12, 2401–2412.
  51. Rizvanova N. G., Levchenkov O. A., Belous A. E., Bezmen N. I., Maslenikov A. V., Komarov A. N., Makeev A. F., Levskiy L. K. (2000) Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contrib. Mineral. Petrol. 139, 101–114.
  52. Schaltegger U. (2007) Hydrothermal zircon. Elements. 3(1), 51–79.
  53. Skublov S. G., Gawad A. E.A., Levashova E. V., Ghoneim M. M. (2021) U–Pb geochronology, REE and trace element geochemistry of zircon from El Fereyid monzogranite, south Eastern Desert, Egypt. J. Mineral. Petrol. Sci. 116, 220–233.
  54. Skublov S. G. Petrov D. A., Galankina O. L., Levashova E. V., Rogova I. V. (2023) Th-Rich zircon from a pegmatite vein hosted in the Wiborg rapakivi granite massif. Geosciences, 13, 362.
  55. Skublov S. G., Terekhov E. N., Kuznetsov N. B., Makeyev A. B., Salimgaraeva L. I. (2024) U–Pb (SHRIMP-II) age of zircon from granites of Bolshoi Tyuters Island (Gulf of Finland, Russia) and the problem of the Ediacaran thermal event in the region. Dokl. Earth Sci., 517(1), 1165-1176.
  56. Trail D., Mojzsis S. J., Harrison T. M., Schmitt A. K., Watson E. B., Young E. D. (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochemistry, Geophysics, Geosystems. 8(6), Q06014.
  57. Watson E. B., Wark D. A., Thomas J. B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433.
  58. Yang W. B., Niu H. C., Shan Q., Sun W. D., Zhang H., Li N. B., Jiang Y. Н., Yu X. Y. (2014) Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization. Mineralium Deposita. 49, 451–470.
  59. Zhai W., Zhang E., Zheng S. Q., Santosh M., Sun X. M., Niu H. C., Fu B., Fu Y., Li D. F., Jiang Y. H., Liang, F. (2022) Hydrothermal zircon: Characteristics, genesis and metallogenic implications. Ore Geol. Rev. 149, 105111.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Varieties of granites from the Vozrozhdenie deposit in transparent polished thin sections (the upper part of the figure is without an analyzer; the lower part is with an analyzer): a – vyborgite; b – aplite-like granites of the contact zone (“trout”); c – trachytoid granites. Legend for minerals: Qz – quartz; Fsp – K-Na feldspar; Bt – biotite; Pl – plagioclase An30–35; Zrn – zircon; Aln – allanite; Flr – fluorite.

下载 (1006KB)
3. Fig. 2. BSE images of zircon grains from granites of the Vozrozhdenie deposit: a–g – vyborgite; d–f – aplite-like granites of the contact zone; g–i – trachytoid granites. Circles indicate areas of analysis by the SIMS method, black and white crosses – points of analysis by the SEM-EDS method.

下载 (585KB)
4. Fig. 3. REE distribution spectra for zircon from vyborgite (sample 1021 – points 1–5) and aplite-like granites of the contact zone (sample 1001-F – points 6–9). Normalized to chondrite CI (McDonough, Sun, 1995). Spectrum numbers correspond to points in Fig. 2.

下载 (253KB)
5. Fig. 4. REE distribution spectra for zircon from trachytoid granites (sample 1002 – points 10–15), normalized to CI chondrite (McDonough, Sun, 1995). Spectrum numbers correspond to points in Fig. 2.

下载 (187KB)
6. Fig. 5. LREE–HREE (a), Ti–Ca (b), Th–U (c) and U–LuN/LaN (d) diagrams for zircon from vyborgites, aplite-like granites of their contact zone and trachytoid granites.

下载 (305KB)
7. Fig. 6. Discrimination diagrams (after: Hoskin, 2005; Grimes et al., 2009; Bouvier et al., 2012) with points of the studied zircon.

下载 (300KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».