Compositional evolution of calzirtite and perovskite in phoscorites and carbonatites of the Guli alkaline-ultramafic complex (Polar Siberia)
- 作者: Kogarko L.N.1, Sorokhtina N.V.1, Kononkova N.N.1
-
隶属关系:
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences
- 期: 卷 70, 编号 2 (2025)
- 页面: 126-145
- 栏目: Articles
- URL: https://journal-vniispk.ru/0016-7525/article/view/294768
- DOI: https://doi.org/10.31857/S0016752525020029
- EDN: https://elibrary.ru/GPXHCP
- ID: 294768
如何引用文章
详细
The paper presents data on the composition and phase heterogeneity of calzirtite Ca2Zr5Ti2O16 and perovskite CaTiO3, which are HFSE oxides that crystallized during the early stages of formation of the carbonatite rock series of the Guli alkaline–ultramafic complex in Polar Siberia. The composition of HFSE minerals systematically changed during the evolution of the carbonatite melt from phoscorites to carbonatites. The calzirtite enriched up to 6 wt % Nb2O5, and the perovskite enriched up to 15 wt % Nb2O5, 7.7 wt % ZrO2, and 6 wt % LREE2O3 in the phoscorites and early calcite carbonatites. Perovskite with low concentrations of admixtures crystallized in the late calcite carbonatites in association with U-, Th-, Ta-rich fluorcalciopyrochlore, thorianite, zirconolite, and baddeleyite. The composition of perovskite-group minerals evolved according to the following of isomorphic exchange schemes: Nb5+ + Fe3+ ↔ Ti4+ + + Zr4+ and 2Ca2+ ↔ Na+ + REE3+. The enrichment of the early calzirtite and perovskite generations in HFSE is explained by the high Nb, Zr, and LREE partition coefficients in carbonatite melt–mineral equilibria. During the crystallization of the carbonatite melt, the activity of alkaline elements decreased, which is confirmed by a decrease in sodium content in the perovskite and a change in the composition of the solid inclusions. The early generations of perovskite and calzirtite from the phoscorites commonly host numerous polyphase inclusions of Ca, Na, K, Ba, and Sr carbonates, halides, and alkali metal sulfides, whereas calcite, fluorapatite, pyrophanite, and barite are found in the late generations of these minerals. It is shown that the crystallization of the phoscorites have crystallized from anhydrous melt that contained no water, and this was favorable for the preservation of alkaline carbonates as solid inclusions in minerals.
全文:

作者简介
L. Kogarko
Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences
编辑信件的主要联系方式.
Email: kogarko@geokhi.ru
俄罗斯联邦, Kosygin str., 19, Moscow, 119911
N. Sorokhtina
Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences
Email: nsorokhtina@gmail.com
俄罗斯联邦, Kosygin str., 19, Moscow, 119911
N. Kononkova
Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences
Email: nnzond@geokhi.ru
俄罗斯联邦, Kosygin str., 19, Moscow, 119911
参考
- Багдасаров Ю.А. (1969) О распределении редкометальной минерализации в карбонатитах. Записки ВМО. 98(4), 395–406.
- Булах А.Г., Шевалеевский И.Д. (1962) К минералогии и кристаллографии кальциртита из щелочных пород и карбонатитов. Записки ВМО. 91(1), 14–29.
- Вильямс Т., Когарко Л.Н. (1996) Новые данные о редкометальной минерализации карбонатитов Гулинского массива (Полярная Сибирь). Геохимия. 6, 483–491.
- Гайдукова В.С., Здорик Т.Б. (1962) Минералы редких элементов в карбонатитах. Геология месторождений редких элементов. 17, 86–117.
- Егоров Л.С. (1991) Ийолит-карбонатитовый плутонизм (на примере Маймеча-Котуйского комплекса Полярной Сибири). Л.: Недра, 260 с.
- Егоров Л.С. (1992) Фоскориты Маймеча-Котуйского ийолит-карбонатитового комплекса. Записки ВМО. 121(3), 13–26.
- Жабин А.Г., Пудовкина З.В., Быкова А.В. (1962) Кальциртит из карбонатитов Гулинской интрузии ультраосновных-щелочных пород в Полярной Сибири. ДАН СССР. 146(6), 1399–1400.
- Иванюк Г.Ю., Яковенчук В.Н., Пахомовский Я.А. (2002) Ковдор. Апатиты: Минералы Лапландии, 326 с.
- Исакова А.Т, Панина Л.И., Рокосова Е.Ю. (2015) Карбонатитовые расплавы и генезис апатитового оруденения на Гулинском плутоне (север Восточной Сибири). Геология и геофизика. 3, 595–607. https://doi.org/10.1016/j.rgg.2015.02.007
- Капустин Ю.Л. (1971) Минералоги карбонатитов. М.: Наука, 288 с.
- Когарко Л.Н. (2012) Геохимия радиоактивных элементов в породах Гулинского массива (Полярная Сибирь). Геохимия. (9), 803–810.
- Kogarko L.N. (2012) Geochemistry of radioactive elements in the rocks of the Guli massif, Polar Siberia. Geochem. Int. 50(9), 719–725. doi: 10.1134/S0016702912090042
- Когарко Л.Н. (2016) Геохимия процессов разделения когерентных элементов (Zr, Hf) в процессах глубокой дифференциации высокощелочных магматических систем (Ловозерский комплекс). Геохимия. (1), 1–7.
- Kogarko L.N. (2016) Geochemistry of fractionation of coherent elements (Zr and Hf) during the profound differentiation of peralkaline magmatic systems: A case study of the Lovozero Complex. Geochem. Int. 54(1), 1–6.
- Когарко Л.Н., Сорохтина Н.В., Кононкова Н.Н., Климович И.В. (2013) Уран и торий в минералах карбонатитов Гулинского массива, Полярная Сибирь. Геохимия. (9), 1–11.
- Kogarko L.N., Sorokhtina N.V, Kononkova N.N., Klimovich I.V. (2013) Uranium and thorium in carbonatitic minerals from the Guli massif, Polar Siberia. Geochem. Int. 51(10), 767–776. doi: 10.1134/S0016702913090036
- Колотов В.П., Жилкина А.В., Широкова В.И., Догадкинa Н.Н., Громяк И.Н., Догадкин Д.Н., Зыбинский А.М., Тюрин Д.А. (2020) Новый подход к минерализации образцов в открытой системе для анализа геологических образцов методом масс-спектрометрии с индуктивно связанной плазмой с улучшенными метрологическими характеристиками. Журнал аналитической химии. 75(5), 394–407.
- Лапин А.В. (1977) Минеральные парагенезисы апатитовых руд и карбонатитов Себльявра. Геология рудных месторождений. (4), 21–33.
- Мышенкова М.С., Зайцев В.А., Томсон С., Латышев А.В., Захаров В.С., Багдасарян Т.Э., Веселовский Р.В. (2020) Термальная история Гулинского плутона (Север Сибирской платформы) по результатам трекового датирования апатита и компьютерного моделирования. Геодинамика и тектонофизика. 11(1), 75–87. https://doi.org/10.5800/GT-2020-11-1-0464
- Расс И.Т., Петренко Д.Б., Ковальчук Е.В., Якушев А.И. (2020) Фоскориты и карбонатиты: взаимоотношения, возможные петрогенетические процессы и исходная магма (массив Ковдор, Кольский п-ов). Геохимия. 65(7), 627–653.
- Rass I.T., Petrenko D.B., Koval’chuk E.V., Yakushev A.I. (2020) Phoscorites and carbonatites: relations, possible petrogenetic processes, and parental magma, with reference to the Kovdor massif, Kola Peninsula. Geochem. Int. 58 (7), 753–778.
- Самойлов В.С., Конев А.А. (1974) Новые данные о тажераните и кальциртите. Вопросы петрографии и минералогии основных и ультраосновных пород Восточной Сибири. Иркутск, 98–103.
- Соколов С.В., Векслер И.В., Сенин В.Г. (1999) Щелочи в карбонатитовых магмах: новые данные о составе расплавных включений. Петрология. 7(6), 644–652.
- Сорохтина Н.В. (2000) Минералогия карбонатитов в зонах контакта с ультраосновными, щелочными породами и фенитами Себльяврского массива. Дис. кан. геол.-мин. наук. М.: МГУ, 359.
- Сорохтина Н.В., Когарко Л.Н., Зайцев В.А., Кононкова Н.Н., Асавин А.М. (2019) Сульфидные ассоциации карбонатитов и фоскоритов Гулинского массива (Полярная Сибирь) и их перспективность на благородные металлы. Геохимия. 64(11), 11–32. doi: 10.31857/S0016-752564111111-1132
- Sorokhtina N.V., Kogarko L.N., Zaitsev V.A., Kononkova N.N., Asavin A.M. (2019) Sulfide mineralization in the carbonatites and phoscorites of the Guli massif, Polar Siberia, and their noble-metal potential. Geochem. Int. 57(11), 1125–1146. doi: 10.1134/S0016702919110107
- Сорохтина Н.В., Липницкий Т.А., Жилкина А.В., Якушев А.И., Кононкова Н.Н. (2023) Геохимия пород редкометального месторождения Нескевара щелочно-ультраосновного комплекса Вуориярви, Кольский полуостров. Геохимия. 68(11), 1133–1160. doi: 10.31857/S0016752523110109
- Sorokhtina N.V., Lipnitsky T.A., Zhilkina A.V., Yakushev A.I., Kononkova N.N. (2023) Geochemistry of rocks at the Neskevara rare-metal deposit of the Vuoriyarvi alkaline–ultramafic complex, Kola Peninsula. Geochem. Int. 61(11), 1128–1154. doi: 10.1134/S0016702923110101
- Субботин В.В., Кирнарский Ю.М., Курбатова Г.С., Стрельникова Л.А., Субботина Г.Ф. (1985) Вещественный состав апатитоносных пород Центральной зоны массива Себльявр. Петрология и минералогия щелочных, щелочно-ультраосновных и карбонатитовых комплексов Кольского полуострова. Апатиты: КФАН СССР, 61-69.
- Субботин В.В. (1998) Минералогия циркония и ниобия в породах карбонатитовой серии щелочно-ультраосновных массивов Кольского полуострова. Автореф. дис. кан. геол.-мин. наук. СП.: СПБГУ, 20.
- Чуканов Н.В., Пеков И.В., Задов А.Е., Волошин А.В., Субботин В.В., Сорохтина Н.В., Расцветаева Р.К., Кривовичев С.В. (2003) Минералы группы лабунцовита. М.: Наука, 323.
- Bellatreccia F., Della Ventura G., Williams C.T., Parodi G.C. (1999) Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, Sao Paulo (Brazil). Miner. Mag. 63(5), 649–660.
- Beyer C., Berndt J., Tappe S., Klemme S. (2013) Trace element partitioning between perovskite and kimberlite to carbonatite melt: New experimental constraints. Chemical Geology. 353, 132–139.
- Braunger S., Marks M.A.W., Wenzel T., Chmyz L., Azzone R.G., Markl G. (2020) Do carbonatites and alkaline rocks reflect variable redox conditions in their upper mantle source? Earth Planet. Sci. Lett. 533, 116041 doi: 10.1016/j.epsl.2019.116041
- Brey G.P., Kogarko L.N., Ryabchikov I.D. (1991) Carbon dioxide in kimberlitic melts. Neues Jahrb Mineral Monatshefte. 4, 159–168.
- Bulakh A.G., Anastasenko G.F., Dakhiya L.M. (1967) Calzirtite from carbonatites of northern Siberia. Amer. Miner. 52(11–12), 1880–1885.
- Chakhmouradian A.R. (2006) High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chemical Geology. 235, 138–160.
- Chakhmouradian A.R., Mitchell R.H. (1997) Compositional variation of perovskite-group minerals from carbonatite complexes of the Kola alkaline province, Russia. The Can. Miner. 35, 1293–1310.
- Chakhmouradian A.R., Mitchell R.H. (2000) Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. Can. Mineral. 38, 975–994.
- Chakhmouradian A.R., Reguir E.P., Kamenetsky V.S., Sharygin V.V., Golovin A.V. (2013) Trace-element partitioning in perovskite: Implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chemical Geology. 353, 112–131. http://dx.doi.org/10.1016/j.chemgeo.2013.01.007
- Chakhmouradian A.R., Williams C.T. (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscorititic and carbonatitic rocks of the Kola Peninsula, Russia. Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province (eds. Wall F., Zaitsev A.N.). London: Chapman & Hall. Mineral. Soc. 10, 293–340.
- Chayka I.F., Kamenetsky V.S., Malitch K.N., Vasil’ev Y.R., Zelenski M.E., Abersteiner A.B., Kuzmin I.A. (2023) Behavior of critical metals in cumulates of alkaline ultramafic magmas in the Siberian large igneous province: Insights from melt inclusions in minerals. Ore Geology Reviews. 160, 105577. https://doi.org/10.1016/j.oregeorev.2023.105577.
- Chen W., Kamenetsky V.S., Simonetti A. (2013) Evidence for the alkalic nature of parental carbonatite melts at Oka complex in Canada. Nat. Commun. 4:2687. doi: 10.1038/ncomms3687
- Cooper A.F., Gittins J., Tuttle O.F. (1975) The system Na2CO3-K2CO3-CaCO3 at 1 kilobar and its significance in carbonatite petrogenesis. Amer. J. Sci. 275, 534–560.
- Dawson J.B. (1962) Sodium carbonatite lavas from Oldoiny Lengai, Tanganyika. Nature. 195, 1075–1076.
- Galuskin E.V., Gazeev V.M., Armbruster Th., Zadov A., Galuskina I.O., Pertsev N.N., Dziercanowski P., Kadiyski M., Gurbanov A., Wrzalik R., Winiarski A. (2008) Lakargiite CaZrO3 - a new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, Russia. Amer. Miner. 93, 1903–1910.
- Ghobadi M., Gerdes A., Kogarko L., Höfer H., Brey G. (2018) In situ LA-ICPMS isotopic and geochronological studies on carbonatites and phoscorites from the Guli massif, Maymecha-Kotuy, Polar Siberia. Geochem. Int. 56(8), 766–783. doi: 10.1134/S0016702918080049
- Ghobadi M., Brey G.P., Gerdes A., Höfer H.E., Keller J. (2022) Accessories in Kaiserstuhl carbonatites and related rocks as accurate and faithful recorders of whole rock age and isotopic composition. Int. J. Earth sci. (geol. Rundschau). 111, 573–588. doi: 10.1007/s00531-021-02130-9
- Hamilton D.L., Bedson P., Esson J. (1989) The behavior of trace elements in the evolution of carbonatites. Carbonatites: genesis and evolution (ed. Bell. K.). London: Unwin Hyman. 405-427.
- Hammouda T., Chantel J., Devidal J.-L. (2010) Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim. Cosmochim. Acta. 74, 7220–7235.
- Jago B., Gittins J. (1993) Pyrochlore crystallization in carbonatites: the role of fluorine // S. Afr. J. Geol. 96, 149-160.
- Kjarsgaard B.A. (1998) Phase relations of a Carbonated High-CaO Nephelinite at 0·2 and 0·5 GPa. J. Petrol. 39(11–12), 2061–2075.
- Kjarsgaard B.A., Hamilton D.L., Peterson T.D. (1995) Peralkaline Nephelinite/Carbonatite Liquid Immiscibility: Comparison of Phase Compositions in Experiments and Natural Lavas from Oldoinyo Lengai. Carbonatite volcanism. Oldoinyo Lengai and the petrogenesis of natrocarbonatites. (eds. Bell K., Keller J.). Berlin: Springer-Verlag, 163–190. https://doi.org/10.1007/978-3-642-79182-6
- Kjarsgaard B.A. Mitchell R.H. (2008) Solubility of Ta in the system CaCO3–Ca(OH)2–NaTaO3– NaNbO3 ± F at 0.1 GPa: implications for the crystallization of pyrochlore-group minerals in carbonatites. The Can. Miner. 46, 981–990. doi: 10.3749/canmin.46.4.981
- Klemme S., van der Laan S.R., Foley S.F., Günther D. (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet. Science Letters. 133, 439–448. doi: 10.1016/0012-821X(95)00098-W
- Klemme S., Dalpé C. (2003) Trace-element partitioning between apatite and carbonatite melt. Amer. Miner. 88, 639–646.
- Klemme S., Meyer H.-P. (2003) Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures. Chemical Geology, 199. 233– 242.
- Kogarko L.N., Plant D.A., Henderson C.M.B., Kjarsgaard B.A. (1991) Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, Polar Siberia. Contr. Miner. Petrol. 109, 124–129.
- Kogarko L.N., Ryabchikov I.D. (2000) Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. J. Asian Earth Sciences. 18, 195–203.
- Kogarko L.N., Zartman R.E. (2007) A Pb isotope investigation of the Guli massif, Maymecha-Kotuy alkaline-ultramafic complex, Siberian flood basalt province, Polar Siberia. Miner. Petrol. 89, 113–132.
- Linnen R.L., Keppler H. (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib. Mineral. Petrol. 128, 213–227.
- Lupini L., Williams C.T., Woolley A.R. (1992) Zr–rich garnet and Zr– and Th–rich perovskite from the Polino carbonatite, Italy. Miner. Mag. 56, 581–586.
- Malmström J.C. Zirconolite: Experiments on the Stability in Hydrothermal Fluids. (2000) Zürich: Schweizerische Geotechnische Kommission, Physical description. 130 p.
- Mitchell R.H. (1996) Perovskites: A revised classification scheme for an important rare earth element host in alkaline rocks. Rare Earth Minerals: Chemistry, Origin and Ore Deposits. London: Chapman & Hall. Mineral. Soc. 6, 41–76.
- Mitchell R.H. (2005) Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist. 43. 2049–2068.
- Mitchell R.H., Welch M.D., Chakhmouradian A.R. (2017) Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Miner. Mag. 81(3), 411–461.
- Mitchell R.H., Gittins J. (2022) Carbonatites and carbothermalites: a revised classification. Lithos. 430–431. https://doi.org/10.1016/j.lithos.2022.106861
- Rass I.T., Shmulovich K.I., Petrenko D.B. (2023) Distribution of trace elements between phases in the carbonate–phosphate system with fluorine at 500 MPa. Lithos. 440–441, 107053. https://doi.org/10.1016/j.lithos.2023.107053
- Reguir E.P., Chakhmouradian A.R., Pisiak L., Halden N.M., Yang P., Xu C., Kynický J., Couëslan C.G. (2012) Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites. Lithos. 128–131, 27–45.
- Reguir E.P., Salnikova E.B., Yang P., Chakhmouradian A.R., Stifeeva M.V., Rass I.T., Kotov A.B. (2021) U–Pb geochronology of calcite carbonatites and jacupirangite from the Guli alkaline complex, Polar Siberia, Russia. Miner. Mag. 85, 469–483. https://doi.org/10.1180/mgm.2021.53
- Sanfilippo A., Tribuzio R., Ottolini L., Hamada M. (2017) Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes. Geochim. Cosmochim. Acta. 214, 51–72.
- Sinclair W., Eggleton R.A., McLauhlin G.M. (1986) Structure refinement of calzirtite from Jacupiranga, Brazil. Amer. Miner. 71(5–6), 815–818.
- Traversa G., Gomes C.B., Brotzu P., Buraglini N., Morbidelli L., Principato M.S., Ronca S., Ruberti E. (2001) Petrography and mineral chemistry of carbonatites and mica-rich rock from the Araxa complex (Alto Paranaiba Province, Brazil). An. Acad. Bras. Ci., 73(1), 71–98. doi: 10.1590/S0001–37652001000100008
- Voropaeva D., Arzamastsev A.A., Botcharnikov R., Buhre S., Gilbricht S., G¨otze J., Klemd R., Schulz B., Tichomirowa M. (2024) LREE rich perovskite in antiskarn reactions - REE transfer from pyroxenites to carbonatites? // Lithos. 468–469, 107480. https://doi.org/10.1016/j.lithos.2023.107480
- Walter B.F., Giebel R.J., Steele-MacInnis M., Marks M.A.W., Kolb J., Markl G. (2021) Fluids associated with carbonatitic magmatism: A critical review and implications for carbonatite magma ascent. Earth Sci. Rev. 215, 103509. https://doi.org/10.1016/j.earscirev.2021.103509.
- Webster J.D., Tappen C.M., Mandeville C.W. (2009) Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa. Geochim. Cosmochim. Acta. 73, 559–581.
- Woolley A.R., Kempe D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions, and element distributions. Carbonatites: genesis and evolution. (ed. Bell K.) London: Unwin Hyman. 1–14.
- Woolley A. R., Kjarsgaard B.A. (2008) Carbonatite occurrences of the world: map and database. Geol. Surv. Can. 5796, 1–28.
- Wu Fu-Y., Yang Y.-H., Mitchell R.H., Bellatreccia F. (2010) In situ U-Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chem. Geol. 277(1–2), 178–195.
- Yaxley G.M., Anenburg M., Tappe S., Decree S., Guzmics T. (2022) Carbonatites: classification, sources, evolution and emplacement. Annu. Rev. Earth Planet. Sci. 50, 261–293.
- Yoder H.S.Jr. (1973) Melilite stability and paragenesis. Fortschr. Mineral. 50, 140–173.
- Zajzon N., Va´czi T., Fehe´r B., Taka´cs A., Szaka´ll S., Weiszburg T.G. (2013) Pyrophanite pseudomorphs after perovskite in Perkupa serpentinites (Hungary): a microtextural study and geological implications. Phys. Chem. Minerals. 40, 611–623. doi: 10.1007/s00269-013-0596-2
补充文件
