Стандартные термодинамические свойства Ag3Sn (шосанбецуит), определенные ЭДС-методом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В системе Ag–Sn впервые определены термодинамические свойства шосанбецуита (Ag3Sn) в твердотельной гальванической ячейке: (–) Pt | Gr | Ag | RbAg4I5 | Ag3Sn, Sn | Gr | Pt (+), в температурном диапазоне 327–427 K в вакууме. В результате анализа полученных данных рассчитаны стандартные (298.15 K, 105 Па) ΔfG0, ΔfH0 и S0, которые составили для Ag3Sn: –21238 Дж·моль–1, –18763 Дж·моль–1 и 187.5 Дж·К–1·моль–1 соответственно.

Ключевые слова

Полный текст

Доступ закрыт

Об авторах

М. В. Воронин

Институт экспериментальной минералогии имени академика Д.С. Коржинского РАН

Email: euo@iem.ac.ru
Россия, 142432, Московская область, Черноголовка, ул. Академика Осипьяна, 4

Е. Г. Осадчий

Институт экспериментальной минералогии имени академика Д.С. Коржинского РАН

Автор, ответственный за переписку.
Email: euo@iem.ac.ru
Россия, 142432, Московская область, Черноголовка, ул. Академика Осипьяна, 4

Список литературы

  1. Воронин М.В., Осадчий Е.Г. (2011) Определение термодинамических свойств селенида серебра методом гальванической ячейки с твердыми и жидкими электролитами. Электрохимия. 47, 446-452.
  2. Глушко В.П. (отв. ред.). (1965-1982) Термические константы веществ: Справочник в 10-и выпусках. М.: ВИНИТИ, электронная версия (под руководством Иориш В.С. и Юнгман В.С.): https://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html.
  3. Жданов Н.Н., Осадчий Е.Г., Зотов А.В. (2005) Универсальная измерительная система для электрохимических измерений в гидротермальных и конденсированных средах. Сборник материалов XV Российского Совещания по Экспериментальной Минералогии. Сыктывкар: Изд-во «Геопринт», 166-168.
  4. Литвиненко И.С. (2017) Интерметаллиды золота из россыпи реки Баимка (Западная Чукотка). Записки Российского минералогического общества. 146(5), 31–43.
  5. Сандимирова Е. И., Сидоров Е. Г., Чубаров В. М., Ибрагимова Э. К., Антонов А. В. (2013) Самородные металлы и интерметаллиды в шлиховых ореолах реки Ольховая 1-я (Камчатский мыс, Восточная Камчатка). Записки Российского минералогического общества. 142(6), 78–88.
  6. Barin I. (1995) Thermochemical data of pure substances. Third Edition. Two Volumes: vol. 1 (Ag–Kr) and vol. II (La–Zr). VCH: New York, 1900 p.
  7. Chevalier P.Y. (1988) A thermodynamic evaluation of the Ag–Sn system. Thermochim. Acta. 136, 45–54.
  8. Cui Y., Xian J.W., Zois A., Marquardt K., Yasuda H., Gourlay C.M. (2023) Nucleation and growth of Ag3Sn in Sn–Ag and Sn–Ag–Cu solder alloys. Acta Mater. 249, 118831.
  9. Esaka H., Shinozuka K., Tamura M. (2005) Evolution of structure unidirectionally solidified Sn–Ag3Sn eutectic alloy. Mater. Trans. 46(5), 916–921.
  10. Fairhurst C.W., Cohen J.B. (1972) The crystal structures of two compounds found in dental amalgam: Ag2Hg3 and Ag3Sn. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(2), 371–378.
  11. Flandorfer H., Saeed U., Luef C., Sabbar A., Ipser H. (2007) Interfaces in lead-free solder alloys: Enthalpy of formation of binary Ag–Sn, Cu–Sn and Ni–Sn intermetallic compounds. Thermochim. Acta. 459(1–2), 34–39.
  12. Franke P., Neuschütz D. (eds.). (2002) Ag–Sn (Silver-Tin). Landolt-Börnstein – Group IV “Physical Chemistry”, Volume 19 “Thermodynamic Properties of Inorganic Materials”, Subvolume 19B1 “Binary Systems. Part 1: Elements and Binary Systems from Ag–Al to Au–Tl”. Springer-Verlag Berlin Heidelberg, 4 p.
  13. Hou N., Xian J.W., Sugiyama A., Yasuda H., Gourlay C.M. (2023) Ag3Sn morphology transitions during eutectic growth in Sn–Ag alloys. Metall. Mater. Trans. A. 54(3), 909–927.
  14. Ipser H., Flandorfer H., Luef C., Schmetterer C., Saeed U. (2007) Thermodynamics and phase diagrams of lead-free solder materials. J. Mater. Sci.: Mater. Electron. 18, 3–17.
  15. Karakaya I., Thompson W.T. (1987) The Ag–Sn (silver-tin) system. Bull. Alloy Phase Diagrams. 8(4), 340–347.
  16. Kattner U.R., Boettinger W.J. (1994) On the Sn–Bi–Ag ternary phase diagram. J. Electron. Mater. 23, 603–610.
  17. Kleppa O.J. (1955) A calorimetric investigation of the system silver-tin at 450°C. Acta Metall. 3(3), 255–259.
  18. Kotadia H.R., Howes P.D., Mannan S.H. (2014) A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54(6–7), 1253–1273.
  19. Nishio–Hamane D., Saito K. (2021) Au (Ag)–Sn–Sb–Pb minerals in association with placer gold from Rumoi province of Hokkaido, Japan: a description of two new minerals (rumoiite and shosanbetsuite). J. Mineral. Petrol. Sci. 116(5), 263–271.
  20. Osadchii E.G., Echmaeva E.A. (2007) The system Ag–Au–Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique. Am. Mineral. 92, 640–647.
  21. Osadchii E.G., Rappo O.A. (2004) Determination of standard thermodynamic properties of sulfides in the Ag–Au–S system by means of a solid-state galvanic cell. Am. Mineral. 89, 1405–1410.
  22. Prince A., Liang P., Tedenac J.-C., Lakiza S., Dobatkina T. (2006) Ag–Au–Sn (Silver-Gold-Tin). Landolt-Börnstein – Group IV “Physical Chemistry”, Volume 11 “Ternary Alloy Systems – Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT”, Subvolume 11B “Noble Metal Systems. Selected Systems from Ag–Al–Zn to Rh–Ru–Sc”. Effenberg G., Ilyenko S. (eds.), Springer-Verlag Berlin Heidelberg, 11 p.
  23. Wachtler M., Winter M., Besenhard J.O. (2002) Anodic materials for rechargeable Li-batteries. J. Power Sources. 105, 151–160.
  24. Wallbrecht P.C., Blachnik R., Mills K.C. (1981) The heat capacity and enthalpy of some Hume-Rothery phases formed by copper, silver and gold. Part II. Cu+Ge, Cu+Sn, Ag+Sn, Au+Sn, Au+Pb systems. Thermochim. Acta. 46(2), 167–174.
  25. Xie Y., Qiao Z. (1996) Thermodynamic reoptimization of the Ag–Sn system. J. Phase Equilib. 17, 208–217.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Природные составы в системе Ag–Au–Sn(±Pb, Sb), в сравнении с экспериментальными данными в системе Ag–Au–Sn при 206 °С (Prince et al., 2006), E – тройная эвтектика.

Скачать (586KB)
3. Рис. 2. Фазовая диаграмма системы Ag–Sn по данным (Karakaya, Thompson, 1987).

Скачать (212KB)
4. Рис. 3. Экспериментальные значения E(T), полученные в ячейке (A). Внизу приведен график остатков.

Скачать (149KB)
5. Рис. 4. Температурная зависимость энергии Гиббса Ag3Sn по данным разных авторов.

Скачать (109KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».