On the Energy-Constrained Diamond Norm and Its Application in Quantum Information Theory
- Авторлар: Shirokov M.E.1
-
Мекемелер:
- Steklov Mathematical Institute
- Шығарылым: Том 54, № 1 (2018)
- Беттер: 20-33
- Бөлім: Information Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166473
- DOI: https://doi.org/10.1134/S0032946018010027
- ID: 166473
Дәйексөз келтіру
Аннотация
We consider a family of energy-constrained diamond norms on the set of Hermitian- preserving linear maps (superoperators) between Banach spaces of trace class operators. We prove that any norm from this family generates strong (pointwise) convergence on the set of all quantum channels (which is more adequate for describing variations of infinite-dimensional channels than the diamond norm topology). We obtain continuity bounds for information characteristics (in particular, classical capacities) of energy-constrained infinite-dimensional quantum channels (as functions of a channel) with respect to the energy-constrained diamond norms, which imply uniform continuity of these characteristics with respect to the strong convergence topology.
Авторлар туралы
M. Shirokov
Steklov Mathematical Institute
Хат алмасуға жауапты Автор.
Email: msh@mi.ras.ru
Ресей, Moscow
Қосымша файлдар
