On the Energy-Constrained Diamond Norm and Its Application in Quantum Information Theory


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a family of energy-constrained diamond norms on the set of Hermitian- preserving linear maps (superoperators) between Banach spaces of trace class operators. We prove that any norm from this family generates strong (pointwise) convergence on the set of all quantum channels (which is more adequate for describing variations of infinite-dimensional channels than the diamond norm topology). We obtain continuity bounds for information characteristics (in particular, classical capacities) of energy-constrained infinite-dimensional quantum channels (as functions of a channel) with respect to the energy-constrained diamond norms, which imply uniform continuity of these characteristics with respect to the strong convergence topology.

Sobre autores

M. Shirokov

Steklov Mathematical Institute

Autor responsável pela correspondência
Email: msh@mi.ras.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2018