On the Energy-Constrained Diamond Norm and Its Application in Quantum Information Theory


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a family of energy-constrained diamond norms on the set of Hermitian- preserving linear maps (superoperators) between Banach spaces of trace class operators. We prove that any norm from this family generates strong (pointwise) convergence on the set of all quantum channels (which is more adequate for describing variations of infinite-dimensional channels than the diamond norm topology). We obtain continuity bounds for information characteristics (in particular, classical capacities) of energy-constrained infinite-dimensional quantum channels (as functions of a channel) with respect to the energy-constrained diamond norms, which imply uniform continuity of these characteristics with respect to the strong convergence topology.

作者简介

M. Shirokov

Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: msh@mi.ras.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018