The Dickman–Goncharov distribution
- Authors: Molchanov S.A.1,2, Panov V.A.2
-
Affiliations:
- University of North Carolina Charlotte
- Laboratory of Stochastic Analysis and its Applications, National Research University Higher School of Economics
- Issue: Vol 75, No 6 (2020)
- Pages: 107-152
- Section: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/133635
- DOI: https://doi.org/10.4213/rm9976
- ID: 133635
Cite item
Abstract
About the authors
Stanislav Alekseevich Molchanov
University of North Carolina Charlotte; Laboratory of Stochastic Analysis and its Applications, National Research University Higher School of Economics
Email: smolchan@uncc.edu
Doctor of physico-mathematical sciences, Professor
Vladimir Alexandrovich Panov
Laboratory of Stochastic Analysis and its Applications, National Research University Higher School of Economics
Email: vpanov@hse.ru
PhD
References
- A. Alhakim, S. Molchanov, “The density flatness phenomenon”, Statist. Probab. Lett., 152 (2019), 156–161
- K. Alladi, “The Turan–Kubilius inequality for integers without large prime factors”, J. Reine Angew. Math., 1982:335 (1982), 180–196
- Z. D. Bai, Sungchul Lee, M. D. Penrose, “Rooted edges of a minimal directed spanning tree on random points”, Adv. in Appl. Probab., 38:1 (2006), 1–30
- G. Ben Arous, L. V. Bogachev, S. A. Molchanov, “Limit theorems for sums of random exponentials”, Probab. Theory Related Fields, 132:4 (2005), 579–612
- A. G. Bhatt, R. Roy, “On a random directed spanning tree”, Adv. in Appl. Probab., 36:1 (2004), 19–42
- P. Billingsley, “On the distribution of large prime divisors”, Period. Math. Hungar., 2:1-4 (1972), 283–289
- A. Bovier, I. Kurkova, M. Löwe, “Fluctuations of the free energy in the REM and the $p$-spin SK models”, Ann. Probab., 30:2 (2002), 605–651
- А. А. Бухштаб, “О числах арифметической прогрессии, у которых все простые множители малы по порядку роста”, Докл. АН СССР, 67 (1949), 5–8
- S. Chatterjee, Sanchayan Sen, “Minimal spanning trees and Stein's method”, Ann. Appl. Probab., 27:3 (2017), 1588–1645
- R. Cont, P. Tankov, Financial modelling with jump processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004, xvi+535 pp.
- S. Covo, “On approximations of small jumps of subordinators with particular emphasis on a Dickman-type limit”, J. Appl. Probab., 46:3 (2009), 732–755
- N. G. de Bruijn, “On the number of positive integers $leq x $ and free of prime factors ${> y}$”, Nederl. Acad. Wetensch. Proc. Ser. A, 54, =Indag. Math., 13 (1951), 50–60
- N. G. de Bruijn, “On the number of positive integers $leq x$ and free of prime factors ${>y}$. II”, Nederl. Akad. Wetensch. Proc. Ser. A, 69, =Indag. Math., 28 (1966), 239–247
- L. De Haan, S. I. Resnick, H. Rootzen, C. de Vries, “Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes”, Stochastic Process. Appl., 32:2 (1989), 213–224
- G. Derfel, Yaqin Feng, S. Molchanov, “Probabilistic approach to a cell growth model”, Differential equations, mathematical physics, and applications: Selim Grigorievich Krein centennial, Contemp. Math., 734, Amer. Math. Soc., Providence, RI, 2019, 95–106
- B. Derrida, “Random-energy model: limit of a family of disordered models”, Phys. Rev. Lett., 45:2 (1980), 79–82
- B. Derrida, “Random-energy model: an exactly solvable model of disordered systems”, Phys. Rev. B (3), 24:5 (1981), 2613–2626
- L. Devroye, Non-uniform random variate generation, Springer-Verlag, New York, 1986, xvi+843 pp.
- K. Dickman, “On the frequency of numbers containing prime factors of a certain relative magnitude”, Ark. för Mat. A, 22 (1930), 10, 14 pp.
- Dickman function, Encyclopedia of mathematics,par, ed. U. Rehmann
- J. Diebolt, D. Guegan, “Tail behaviour of the stationary density of general non-linear autoregressive processes of order 1”, J. Appl. Probab., 30:2 (1993), 315–329
- T. Eisele, “On a third-order phase transition”, Comm. Math. Phys., 90:1 (1983), 125–159
- P. Embrechts, C. Goldie, “Perpetuities and random equations”, Asymptotic statistics (Prague, 1993), Contrib. Statist., Physica, Heidelberg, 1994, 75–86
- P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N. Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp.
- P. Erdös, “On a family of symmetric Bernoulli convolutions”, Amer. J. Math., 61:4 (1939), 974–976
- P. Erdös, “On the smoothness properties of a family Bernoulli convolutions”, Amer. J. Math., 62 (1940), 180–186
- В. Феллер, Введение в теорию вероятностей и ее приложения, т. 1, Мир, М., 1964, 498 с.
- Shui Feng, The Poisson–Dirichlet distribution and related topics. Models and asymptotic behaviors, Probab. Appl. (N. Y.), Springer, Heidelberg, 2010, xiv+218 pp.
- В. Л. Гончаров, “Из области комбинаторики”, Изв. АН СССР. Сер. матем., 8:1 (1944), 3–48
- M. Grabchak, S. A. Molchanov, “Limit theorems for random exponentials: the bounded support case”, Теория вероятн. и ее примен., 63:4 (2018), 779–794
- A. Hildebrand, “Integers free of large prime factors and the Riemann hypothesis”, Mathematika, 31:2 (1984), 258–271
- A. Hildebrand, “On the number of positive integers $leq x$ and free of prime factors ${> y}$”, J. Number Theory, 22:3 (1986), 289–307
- A. Hildebrand, G. Tenenbaum, “On integers free of large prime factors”, Trans. Amer. Math. Soc., 296:1 (1986), 265–290
- A. Hildebrand, G. Tenenbaum, “Integers without large prime factors”, J. Theor. Nombres Bordeaux, 5:2 (1993), 411–484
- М. Кац, Вероятность и смежные вопросы в физике, 2-е изд., УРСС, М., 2003, 273 с.
- D. E. Knuth, L. Trabb Pardo, “Analysis of a simple factorization algorithm”, Theoret. Comput. Sci., 3:3 (1976/77), 321–348
- В. Д. Конаков, С. Меноззи, C. А. Молчанов, “Диффузионные процессы и их аппроксимации на разрешимых группах верхнетреугольных $(2times 2)$-матриц”, Докл. РАН, 439:5 (2011), 585–588
- V. Konakov, S. Menozzi, S. Molchanov, “The Brownian motion on $operatorname{Aff}(mathbb R)$ and quasi-local theorems”, Probabilistic methods in geometry, topology and spectral theory, Contemp. Math., 739, Amer. Math. Soc., Providence, RI, 2019, 97–125
- Г. Маккин, Стохастические интегралы, Мир, М., 1972, 184 с.
- S. Molchanov, V. Panov, “Limit theorems for the alloy-type random energy model”, Stochastics, 91:5 (2019), 754–772
- P. Moree, “Nicolaas Govert de Bruijn, the enchanter of friable integers”, Indag. Math. (N. S.), 24:4 (2013), 774–801
- K. K. Norton, Numbers with small prime factors, and the least $k$th power non-residue, Mem. Amer. Math. Soc., 106, Amer. Math. Soc., Providence, RI, 1971, ii+106 pp.
- E. Olivieri, P. Picco, “On the existence of thermodynamics for the random energy model”, Comm. Math. Phys., 96:1 (1984), 125–144
- M. D. Penrose, A. R. Wade, “Random minimal directed spanning trees and Dickman-type distributions”, Adv. in Appl. Probab., 36:3 (2004), 691–714
- M. D. Penrose, A. R. Wade, “On the total length of the random minimal directed spanning tree”, Adv. in Appl. Probab., 38:2 (2006), 336–372
- M. D. Penrose, A. R. Wade, “Limit theorems for random spatial drainage networks”, Adv. in Appl. Probab., 42:3 (2010), 659–688
- Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal geometry and stochastics II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000, 39–65
- Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231–239
- Ю. В. Прохоров, Ю. А. Розанов, Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы, 3-е перераб. изд., Наука, М., 1987, 398 с.
- S. Ramanujan, The lost notebook and other unpublished papers, with an introduction by G. E. Andrews, Springer-Verlag, Berlin; Narosa Publ. House, New Delhi, 1988, xxv+419 pp.
- V. Ramaswami, “On the number of positive integers less than $x$ and free of prime divisors greater than $x^{c}$”, Bull. Amer. Math. Soc., 55:12 (1949), 1122–1127
- R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., s1-13:4 (1938), 242–247
- I. Rodriguez-Iturbe, A. Rinaldo, Fractal river basins. Chance and self-organization, Cambridge Univ. Press, Cambridge, 2001, 570 pp.
- L. C. G. Rogers, D. Williams, Diffusions, Markov processes and martingales, v. 2, Cambridge Math. Lib., Itô calculus, Reprint of the 2nd ed., Cambridge Univ. Press, Cambridge, 2000, xiv+480 pp.
- W. Schoutens, Levy processes in finance. Pricing financial derivatives, John Wiley and Sons, Chichester, 2003, 200 pp.
- P. Seba, “Markov chain of distances between parked cars”, J. Phys. A, 41:12 (2008), 122003, 5 pp.
- B. Solomyak, “On the random series $sum pmlambda^n$ (an Erdös problem)”, Ann. of Math. (2), 142:3 (1995), 611–625
- G. Tenenbaum, Introduction to analytic and probabilistic number theory, Transl. from the French, Grad. Stud. Math., 163, 3rd ed., Amer. Math. Soc., Providence, RI, 2015, xxiv+629 pp.
- А. М. Вершик, “Асимптотическое распределение разложений натуральных чисел на простые делители”, Докл. АН СССР, 289:2 (1986), 269–272
- А. М. Вершик, “Существует ли мера Лебега в бесконечномерном пространстве?”, Анализ и особенности. Часть 2, Сборник статей. К 70-летию со дня рождения академика Владимира Игоревича Арнольда, Тр. МИАН, 259, Наука, МАИК “Наука/Интерпериодика”, М., 2007, 256–281
- А. М. Вершик, А. А. Шмидт, “Предельные меры, возникающие в асимптотической теории симметрических групп. I”, Теория вероятн. и ее примен., 22:1 (1977), 72–88
- А. М. Вершик, А. А. Шмидт, “Предельные меры, возникающие в асимптотической теории симметрических групп. II”, Теория вероятн. и ее примен., 23:1 (1978), 42–54
Supplementary files
