Integrability of deformed
- Authors: Zabrodin A.V.1,2,3
-
Affiliations:
- Skolkovo Institute of Science and Technology
- HSE University
- National Research Centre "Kurchatov Institute"
- Issue: Vol 78, No 2 (2023)
- Pages: 149-188
- Section: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/133738
- DOI: https://doi.org/10.4213/rm10105
- ID: 133738
Cite item
Abstract
About the authors
Anton Vladimirovich Zabrodin
Skolkovo Institute of Science and Technology; HSE University; National Research Centre "Kurchatov Institute"
Email: zabrodin@itep.ru
Doctor of physico-mathematical sciences, no status
References
- F. Calogero, “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436
- F. Calogero, “Exactly solvable one-dimensional many-body systems”, Lett. Nuovo Cimento (2), 13 (1975), 411–416
- J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220
- M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400
- A. M. Perelomov, “Completely integrable classical systems connected with semisimple Lie algebras. III”, Lett. Math. Phys., 1:6 (1977), 531–534
- S. Wojciechowski, “New completely integrable Hamiltonian systems of $N$ particles on the real line”, Phys. Lett. A, 59:2 (1976), 84–86
- А. М. Переломов, Интегрируемые системы классической механики и алгебры Ли, Наука, М., 1990, 240 с.
- S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170:2 (1986), 370–405
- S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Comm. Math. Phys., 110:2 (1987), 191–213
- H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Comm. Pure Appl. Math., 30:1 (1977), 95–148
- И. М. Кричевер, “О рациональных решениях уравнения Кадомцева–Петвиашвили и об интегрируемых системах $N$ частиц на прямой”, Функц. анализ и его прил., 12:1 (1978), 76–78
- D. V. Choodnovsky, G. V. Choodnovsky, “Pole expansions of non-linear partial differential equations”, Nuovo Cimento B (11), 40:2 (1977), 339–353
- И. М. Кричевер, “Эллиптические решения уравнения Кадомцева–Петвиашвили и интегрируемые системы частиц”, Функц. анализ и его прил., 14:4 (1980), 45–54
- И. М. Кричевер, А. В. Забродин, “Спиновое обобщение модели Руйсенарса–Шнайдера, неабелева двумеризованная цепочка Тода и представления алгебры Склянина”, УМН, 50:6(306) (1995), 3–56
- В. В. Прокофьев, А. В. Забродин, “Эллиптические решения иерархии решетки Тоды и эллиптическая модель Руйсенарса–Шнайдера”, ТМФ, 208:2 (2021), 282–309
- I. Krichever, A. Zabrodin, Monodromy free linear equations and many-body systems, 2022, 32 pp.
- I. Krichever, A. Zabrodin, Toda lattice with constraint of type B, 2022, 24 pp.
- D. Rudneva, A. Zabrodin, “Dynamics of poles of elliptic solutions to BKP equation”, J. Phys. A, 53:7 (2020), 075202, 17 pp.
- F. W. Nijhoff, Gen-Di Pang, “A time-discretized version of the Calogero–Moser model”, Phys. Lett. A, 191:1-2 (1994), 101–107
- F. W. Nijhoff, O. Ragnisco, V. B. Kuznetsov, “Integrable time-discretisation of the Ruijsenaars–Schneider model”, Comm. Math. Phys., 176:3 (1996), 681–700
- Yu. B. Suris, The problem of integrable discretization: Hamiltonian approach, Progr. Math., 219, Birkhäuser Verlag, Basel, 2003, xxii+1070 pp.
- S. Wojciechowski, “The analogue of the Bäcklund transformation for integrable many-body systems”, J. Phys. A, 15:12 (1982), L653–L657
- G. Bonelli, A. Sciarappa, A. Tanzini, P. Vasko, “Six-dimensional supersymmetric gauge theories, quantum cohomology of instanton moduli spaces and $gl(N)$ quantum intermediate long wave hydrodynamics”, J. High Energy Phys., 2014:07 (2014), 141, 29 pp.
- A. Zabrodin, A. Zotov, “Self-dual form of Ruijsenaars-Schneider models and ILW equation with discrete Laplacian”, Nuclear Phys. B, 927 (2018), 550–565
- A. G. Abanov, E. Bettelheim, P. Wiegmann, “Integrable hydrodynamics of Calogero–Sutherland model: bidirectional Benjamin–Ono equation”, J. Phys. A, 42:13 (2009), 135201, 24 pp.
- A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems”, J. Geom. Phys., 146 (2019), 103506, 26 pp.
- А. А. Ахметшин, Ю. С. Вольвовский, И. М. Кричевер, “Эллиптические семейства решений уравнения Кадомцева–Петвиашвили и полевой аналог эллиптической системы Калоджеро–Мозера”, Функц. анализ и его прил., 36:4 (2002), 1–17
- A. Zabrodin, A. Zotov, “Field analogue of the Ruijsenaars–Schneider model”, J. High Energy Phys., 2022:07 (2022), 023, 51 pp.
- T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58:1 (1982), 9–12
- E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear integrable systems–classical theory and quantum theory (Kyoto, 1981), World Sci. Publ., Singapore, 1983, 39–119
- E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4:3 (1982), 343–365
- А. В. Забродин, “Эллиптические семейства решений иерархии Тоды со связью”, ТМФ, 213:1 (2022), 57–64
- N. Delice, F. W. Nijhoff, S. Yoo-Kong, “On elliptic Lax systems on the lattice and a compound theorem for hyperdeterminants”, J. Phys. A, 48:3 (2015), 035206, 27 pp.
- A. Zabrodin, “How Calogero–Moser particles can stick together”, J. Phys. A, 54:30 (2021), 225201, 7 pp.
- С. В. Манаков, “Метод обратной задачи рассеяния и двумерные эволюционные уравнения”, УМН, 31:5(191) (1976), 245–246
Supplementary files
