Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 78, No 2 (2023)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Extremal problems in geometric function theory

Avkhadiev F.G., Kayumov I.R., Nasyrov S.R.

Abstract

Обзорная статья посвящена ряду достижений в области экстремальных проблем геометрической теории функций. В основе методов и подходов к решению рассматриваемых проблем лежат конформные изоморфизмы, а также теория однолистных функций, развивавшаяся с начала XX в. Приведены результаты по интегральным средним конформных отображений круга, в частности, дано распространение неравенства Е. П. Долженко для рациональных функций на случай произвольных областей со спрямляемыми границами. Описаны исследования в области неравенств типа Бора. Особо выделены интегральные неравенства типа Харди и Реллиха, в которых аналитические свойства неравенств тесно переплетаются с геометрическими характеристиками границ областей. Представлены результаты, касающиеся решения задачи Вуоринена о поведении конформных модулей при неограниченном растяжении плоскости. Получены формулы для вариации емкостей Робена. Охарактеризованы однопараметрические семейства рациональных и эллиптических функций, критические значения которых изменяются по заданному закону. Описаны также последние результаты по гипотезе Смейла, а также дуальной гипотезе Смейла. Библиография: 149 названий.
Uspekhi Matematicheskikh Nauk. 2023;78(2):3-70
pages 3-70 views

Geometry of Diophanite exponents

German O.N.

Abstract

Диофантовы экспоненты являются одними из самых простых количественных характеристик, отвечающих за аппроксимационные свойства линейных подпространств евклидова пространства. Данный обзор посвящён описанию современного состояния раздела теории диофантовых приближений, изучающего диофантовы экспоненты и соотношения, которым они удовлетворяют. Мы обсуждаем классические диофантовы экспоненты, возникающие в задаче приближения нуля набором значений нескольких линейных форм в целых точках, их аналоги в теории диофантовых приближений с весами, мультипликативные диофантовы экспоненты, а также диофантовы экспоненты решёток. Особое внимание уделяется принципу переноса. Библиография: 99 названий.
Uspekhi Matematicheskikh Nauk. 2023;78(2):71-148
pages 71-148 views

Integrability of deformed

Zabrodin A.V.

Abstract

Найдены интегралы движения для недавно введенной деформированной многочастичной системы Руйсенарса–Шнайдера, которая является динамической системой для полюсов эллиптических решений решетки Тоды со связью типа B. Наш метод основан на том факте, что уравнения движения этой системы совпадают с уравнениями движения для частиц Руйсенарса–Шнайдера, слипающихся в пары, в которых расстояние между частицами фиксировано и принимает специальное значение. Также для деформированной системы Руйсенарса–Шнайдера найдены преобразования Бэклунда и интегрируемая версия этой системы в дискретном времени. Показано, что эта последняя является динамической системой для полюсов эллиптических решений полностью дискретного уравнения Кадомцева–Петвиашвили типа B. Кроме того, предложен полевой аналог деформированной системы Руйсенарса–Шнайдера на пространственно-временной решетке. Библиография: 35 названий.
Uspekhi Matematicheskikh Nauk. 2023;78(2):149-188
pages 149-188 views

General and historic behaviour in replicator equations given by nonlinear mappings

Saburov M.K.
Uspekhi Matematicheskikh Nauk. 2023;78(2):189-190
pages 189-190 views

High-order traps in quantum control problems for certain strongly degenerate systems

Volkov B.O., Pechen A.N.
Uspekhi Matematicheskikh Nauk. 2023;78(2):191-192
pages 191-192 views

A map to virtual braids and representations of braids

Manturov V.O., Nikonov I.M.
Uspekhi Matematicheskikh Nauk. 2023;78(2):193-194
pages 193-194 views

Index of a minimal surface in the 3-sphere

Morozov E.A., Penskoi A.V.
Uspekhi Matematicheskikh Nauk. 2023;78(2):195-196
pages 195-196 views

From the Editorial Board

- -.

Abstract

Уважаемые авторы!Обращаем Ваше внимание, что с 1 января 2023 года краткие сообщения в журнал «Успехи математических наук» рассматриваются по представлению членов редколлегии журнала.
Uspekhi Matematicheskikh Nauk. 2023;78(2):198-198
pages 198-198 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».