Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 78, № 2 (2023)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Экстремальные проблемы в геометрической теории функций

Авхадиев Ф.Г., Каюмов И.Р., Насыров С.Р.

Аннотация

Обзорная статья посвящена ряду достижений в области экстремальных проблем геометрической теории функций. В основе методов и подходов к решению рассматриваемых проблем лежат конформные изоморфизмы, а также теория однолистных функций, развивавшаяся с начала XX в. Приведены результаты по интегральным средним конформных отображений круга, в частности, дано распространение неравенства Е. П. Долженко для рациональных функций на случай произвольных областей со спрямляемыми границами. Описаны исследования в области неравенств типа Бора. Особо выделены интегральные неравенства типа Харди и Реллиха, в которых аналитические свойства неравенств тесно переплетаются с геометрическими характеристиками границ областей. Представлены результаты, касающиеся решения задачи Вуоринена о поведении конформных модулей при неограниченном растяжении плоскости. Получены формулы для вариации емкостей Робена. Охарактеризованы однопараметрические семейства рациональных и эллиптических функций, критические значения которых изменяются по заданному закону. Описаны также последние результаты по гипотезе Смейла, а также дуальной гипотезе Смейла. Библиография: 149 названий.
Успехи математических наук. 2023;78(2):3-70
pages 3-70 views

Геометрия диофантовых экспонент

Герман О.Н.

Аннотация

Диофантовы экспоненты являются одними из самых простых количественных характеристик, отвечающих за аппроксимационные свойства линейных подпространств евклидова пространства. Данный обзор посвящён описанию современного состояния раздела теории диофантовых приближений, изучающего диофантовы экспоненты и соотношения, которым они удовлетворяют. Мы обсуждаем классические диофантовы экспоненты, возникающие в задаче приближения нуля набором значений нескольких линейных форм в целых точках, их аналоги в теории диофантовых приближений с весами, мультипликативные диофантовы экспоненты, а также диофантовы экспоненты решёток. Особое внимание уделяется принципу переноса. Библиография: 99 названий.
Успехи математических наук. 2023;78(2):71-148
pages 71-148 views

Об интегрируемости деформированной системы Руйсенарса–Шнайдера

Забродин А.В.

Аннотация

Найдены интегралы движения для недавно введенной деформированной многочастичной системы Руйсенарса–Шнайдера, которая является динамической системой для полюсов эллиптических решений решетки Тоды со связью типа B. Наш метод основан на том факте, что уравнения движения этой системы совпадают с уравнениями движения для частиц Руйсенарса–Шнайдера, слипающихся в пары, в которых расстояние между частицами фиксировано и принимает специальное значение. Также для деформированной системы Руйсенарса–Шнайдера найдены преобразования Бэклунда и интегрируемая версия этой системы в дискретном времени. Показано, что эта последняя является динамической системой для полюсов эллиптических решений полностью дискретного уравнения Кадомцева–Петвиашвили типа B. Кроме того, предложен полевой аналог деформированной системы Руйсенарса–Шнайдера на пространственно-временной решетке. Библиография: 35 названий.
Успехи математических наук. 2023;78(2):149-188
pages 149-188 views
pages 189-190 views
pages 191-192 views

Отображение в виртуальные косы и представления кос

Мантуров В.О., Никонов И.М.
Успехи математических наук. 2023;78(2):193-194
pages 193-194 views

Индекс минимальных поверхностей в трехмерной сфере

Морозов Е.А., Пенской А.В.
Успехи математических наук. 2023;78(2):195-196
pages 195-196 views

От редколлегии

- -.

Аннотация

Уважаемые авторы!Обращаем Ваше внимание, что с 1 января 2023 года краткие сообщения в журнал «Успехи математических наук» рассматриваются по представлению членов редколлегии журнала.
Успехи математических наук. 2023;78(2):198-198
pages 198-198 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).