Спектральное неравенство для уравнения Шрёдингера с многоточечным потенциалом

Обложка
  • Авторы: Гриневич П.Г.1,2,3, Новиков Р.Г.4,5
  • Учреждения:
    1. Математический институт им. В.А. Стеклова Российской академии наук
    2. Институт теоретической физики им. Л.Д. Ландау Российской академии наук
    3. Московский государственный университет имени М. В. Ломоносова
    4. École Polytechnique CNRS, Centre de Mathématiques Appliquées
    5. Институт теории прогноза землетрясений и математической геофизики Российской академии наук
  • Выпуск: Том 77, № 6 (2022)
  • Страницы: 69-76
  • Раздел: Статьи
  • URL: https://journal-vniispk.ru/0042-1316/article/view/142318
  • DOI: https://doi.org/10.4213/rm10080
  • ID: 142318

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается уравнение Шрёдингера с потенциалом, который является суммой регулярной функции и конечного набора точечных рассеивателей типа Бете–Пайерлса. Для этого уравнения рассматривается спектральная задача с линейными однородными граничными условиями, включая случаи Дирихле, Неймана и Робина. Показано, что если энергия $E$ является собственным значением кратности $m$, то после добавления к потенциалу дополнительных $n$ ($n < m$) точечных рассеивателей она остается собственным значением кратности не менее m−n. Как следствие, поскольку для нулевого потенциала все энергии являются энергиями частичной прозрачности бесконечной кратности, то для n-точечных потенциалов это свойство также имеет место, что было обнаружено в нашей недавней работе. Библиография: 33 названия

Об авторах

Петр Георгиевич Гриневич

Математический институт им. В.А. Стеклова Российской академии наук; Институт теоретической физики им. Л.Д. Ландау Российской академии наук; Московский государственный университет имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: pgg@landau.ac.ru
доктор физико-математических наук, ведущий научный сотрудник

Рoман Геннадьевич Новиков

École Polytechnique CNRS, Centre de Mathématiques Appliquées; Институт теории прогноза землетрясений и математической геофизики Российской академии наук

Email: roman.novikov@polytechnique.edu
доктор физико-математических наук

Список литературы

  1. Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. III, Квантовая механика. Нерелятивистская теория, 3-е изд., Наука, М., 1974, 752 с.
  2. В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, Теория солитонов. Метод обратной задачи, Наука, М., 1980, 320 с.
  3. С. Альбеверио, Ф. Гестези, Р. Хеэг-Крон, X. Хольден, Решаемые модели в квантовой механике, Мир, М., 1991, 568 с.
  4. L. Faddeev, “Instructive history of the quantum inverse scattering method”, KdV '95 (Amsterdam, 1995), Acta Appl. Math., 39:1-3 (1995), 69–84
  5. P. G. Grinevich, R. G. Novikov, “Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials”, Comm. Math. Phys., 174:2 (1995), 409–446
  6. П. Г. Гриневич, “Преобразование рассеяния для двумерного оператора Шрeдингера с убывающим на бесконечности потенциалом при фиксированной ненулевой энергии”, УМН, 55:6(336) (2000), 3–70
  7. И. А. Тайманов, С. П. Царев, “О преобразовании Мутара и его применениях к спектральной теории и солитонным уравнениям”, Труды Пятой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям, Часть 1 (Москва, 2008), СМФН, 35, РУДН, М., 2010, 101–117
  8. Р. Г. Новиков, И. А. Тайманов, С. П. Царев, “Двумерные потенциалы Вигнера–фон Неймана с кратным положительным собственным значением”, Функц. анализ и его прил., 48:4 (2014), 74–77
  9. H. Bethe, R. Peierls, “Quantum theory of the diplon”, Proc. Roy. Soc. London Ser. A, 148:863 (1935), 146–156
  10. L. H. Thomas, “The interaction between a neutron and a proton and the structure of $mathbf H^3$”, Phys. Rev. (2), 47:12 (1935), 903–909
  11. E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate”, Ricerca Sci., 7(2) (1936), 13–52
  12. Я. Б. Зельдович, “Рассеяние сингулярным потенциалом в теории возмущений и в импульсном представлении”, ЖЭТФ, 38:3 (1960), 819–824
  13. Ф. А. Березин, Л. Д. Фаддеев, “Замечание об уравнении Шредингера с сингулярным потенциалом”, Докл. АН СССР, 137:5 (1961), 1011–1014
  14. Ю. Н. Демков, В. Н. Островский, Метод потенциалов нулевого радиуса в атомной физике, Изд-во Ленингр. ун-та, Л., 1975, 240 с.
  15. В. А. Буров, С. А. Морозов, “Связь между амплитудой и фазой сигнала, рассеянного ‘точечной’ акустической неоднородностью”, Акустич. журн., 47:6 (2001), 751–756
  16. Н. П. Бадалян, В. А. Буров, С. А. Морозов, О. Д. Румянцева, “Рассеяние на акустических граничных рассеивателях с малыми волновыми размерами и их восстановление”, Акустич. журн., 55:1 (2009), 3–10
  17. K. V. Dmitriev, O. D. Rumyantseva, “Features of solving the direct and inverse scattering problems for two sets of monopole scatterers”, J. Inverse Ill-Posed Probl., 29:5 (2021), 775–789
  18. P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for point potentials in two dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106
  19. P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for multipoint potentials”, Eurasian J. Math. Comput. Appl., 1:2 (2013), 76–91
  20. П. Г. Гриневич, Р. Г. Новиков, “Многоточечные рассеиватели со связанными состояниями при нулевой энергии”, ТМФ, 193:2 (2017), 309–314
  21. P. G. Grinevich, R. G. Novikov, “Creation and annihilation of point-potentials using Moutard-type transform in spectral variable”, J. Math. Phys., 61:9 (2020), 093501, 9 pp.
  22. P. G. Grinevich, R. G. Novikov, “Transmission eigenvalues for multipoint scatterers”, Eurasian J. Math. Comput. Appl., 9:4 (2021), 17–25
  23. А. Д. Агальцов, Р. Г. Новиков, “Примеры решения обратной задачи рассеяния и уравнений иерархии Веселова–Новикова по данным рассеяния точечных потенциалов”, УМН, 74:3(447) (2019), 3–16
  24. R. G. Novikov, “Inverse scattering for the Bethe–Peierls model”, Eurasian J. Math. Comput. Appl., 6:1 (2018), 52–55
  25. Р. Г. Новиков, И. А. Тайманов, “Преобразование Мутара и двумерные многоточечные дельтаобразные потенциалы”, УМН, 68:5(413) (2013), 181–182
  26. D. S. Chashchin, “Example of point potential with inner structure”, Eurasian J. Math. Comput. Appl., 6:1 (2018), 4–10
  27. E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, E. Segrè, “Artificial radioactivity produced by neutron bombardment–II”, Proc. Roy. Soc. London Ser. A, 149:868 (1935), 522–558
  28. A. Kirsch, “The denseness of the far field patterns for the transmission problem”, IMA J. Appl. Math., 37:3 (1986), 213–225
  29. D. Colton, P. Monk, “The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium”, Quart. J. Mech. Appl. Math., 41:1 (1988), 97–125
  30. F. Cakoni, H. Haddar, “Transmission eigenvalues”, Inverse Problems, 29:10 (2013), 100201, 3 pp.
  31. B. P. Rynne, B. D. Sleeman, “The interior transmission problem and inverse scattering from inhomogeneous media”, SIAM J. Math. Anal., 22:6 (1991), 1755–1762
  32. E. Lakshtanov, B. Vainberg, “Weyl type bound on positive interior transmission eigenvalues”, Comm. Partial Differential Equations, 39:9 (2014), 1729–1740
  33. F. Cakoni, Hoai-Minh Nguyen, “On the discreteness of transmission eigenvalues for the Maxwell equations”, SIAM J. Math. Anal., 53:1 (2021), 888–913

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Гриневич П.Г., Новиков Р.Г., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).