Spectral inequality for Schrödinger's equation with multipoint potential

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Schrödinger's equation with potential that is a sum of a regular function and a finite set of point scatterers of Bethe–Peierls type is under consideration. For this equation the spectral problem with homogeneous linear boundary conditions is considered, which covers the Dirichlet, Neumann, and Robin cases. It is shown that when the energy $E$ is an eigenvalue with multiplicity $m$, it remains an eigenvalue with multiplicity at least $m-n$ after adding $n0042-1316m$ point scatterers. As a consequence, because for the zero potential all values of the energy are transmission eigenvalues with infinite multiplicity, this property also holds for $n$-point potentials, as discovered originally in a recent paper by the authors.Bibliography: 33 titles.

About the authors

Petr Georgievich Grinevich

Steklov Mathematical Institute of Russian Academy of Sciences; L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: pgg@landau.ac.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher

Roman Gennadievich Novikov

École Polytechnique CNRS, Centre de Mathématiques Appliquées; International Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS

Email: roman.novikov@polytechnique.edu
Doctor of physico-mathematical sciences

References

  1. Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. III, Квантовая механика. Нерелятивистская теория, 3-е изд., Наука, М., 1974, 752 с.
  2. В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, Теория солитонов. Метод обратной задачи, Наука, М., 1980, 320 с.
  3. С. Альбеверио, Ф. Гестези, Р. Хеэг-Крон, X. Хольден, Решаемые модели в квантовой механике, Мир, М., 1991, 568 с.
  4. L. Faddeev, “Instructive history of the quantum inverse scattering method”, KdV '95 (Amsterdam, 1995), Acta Appl. Math., 39:1-3 (1995), 69–84
  5. P. G. Grinevich, R. G. Novikov, “Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials”, Comm. Math. Phys., 174:2 (1995), 409–446
  6. П. Г. Гриневич, “Преобразование рассеяния для двумерного оператора Шрeдингера с убывающим на бесконечности потенциалом при фиксированной ненулевой энергии”, УМН, 55:6(336) (2000), 3–70
  7. И. А. Тайманов, С. П. Царев, “О преобразовании Мутара и его применениях к спектральной теории и солитонным уравнениям”, Труды Пятой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям, Часть 1 (Москва, 2008), СМФН, 35, РУДН, М., 2010, 101–117
  8. Р. Г. Новиков, И. А. Тайманов, С. П. Царев, “Двумерные потенциалы Вигнера–фон Неймана с кратным положительным собственным значением”, Функц. анализ и его прил., 48:4 (2014), 74–77
  9. H. Bethe, R. Peierls, “Quantum theory of the diplon”, Proc. Roy. Soc. London Ser. A, 148:863 (1935), 146–156
  10. L. H. Thomas, “The interaction between a neutron and a proton and the structure of $mathbf H^3$”, Phys. Rev. (2), 47:12 (1935), 903–909
  11. E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate”, Ricerca Sci., 7(2) (1936), 13–52
  12. Я. Б. Зельдович, “Рассеяние сингулярным потенциалом в теории возмущений и в импульсном представлении”, ЖЭТФ, 38:3 (1960), 819–824
  13. Ф. А. Березин, Л. Д. Фаддеев, “Замечание об уравнении Шредингера с сингулярным потенциалом”, Докл. АН СССР, 137:5 (1961), 1011–1014
  14. Ю. Н. Демков, В. Н. Островский, Метод потенциалов нулевого радиуса в атомной физике, Изд-во Ленингр. ун-та, Л., 1975, 240 с.
  15. В. А. Буров, С. А. Морозов, “Связь между амплитудой и фазой сигнала, рассеянного ‘точечной’ акустической неоднородностью”, Акустич. журн., 47:6 (2001), 751–756
  16. Н. П. Бадалян, В. А. Буров, С. А. Морозов, О. Д. Румянцева, “Рассеяние на акустических граничных рассеивателях с малыми волновыми размерами и их восстановление”, Акустич. журн., 55:1 (2009), 3–10
  17. K. V. Dmitriev, O. D. Rumyantseva, “Features of solving the direct and inverse scattering problems for two sets of monopole scatterers”, J. Inverse Ill-Posed Probl., 29:5 (2021), 775–789
  18. P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for point potentials in two dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106
  19. P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for multipoint potentials”, Eurasian J. Math. Comput. Appl., 1:2 (2013), 76–91
  20. П. Г. Гриневич, Р. Г. Новиков, “Многоточечные рассеиватели со связанными состояниями при нулевой энергии”, ТМФ, 193:2 (2017), 309–314
  21. P. G. Grinevich, R. G. Novikov, “Creation and annihilation of point-potentials using Moutard-type transform in spectral variable”, J. Math. Phys., 61:9 (2020), 093501, 9 pp.
  22. P. G. Grinevich, R. G. Novikov, “Transmission eigenvalues for multipoint scatterers”, Eurasian J. Math. Comput. Appl., 9:4 (2021), 17–25
  23. А. Д. Агальцов, Р. Г. Новиков, “Примеры решения обратной задачи рассеяния и уравнений иерархии Веселова–Новикова по данным рассеяния точечных потенциалов”, УМН, 74:3(447) (2019), 3–16
  24. R. G. Novikov, “Inverse scattering for the Bethe–Peierls model”, Eurasian J. Math. Comput. Appl., 6:1 (2018), 52–55
  25. Р. Г. Новиков, И. А. Тайманов, “Преобразование Мутара и двумерные многоточечные дельтаобразные потенциалы”, УМН, 68:5(413) (2013), 181–182
  26. D. S. Chashchin, “Example of point potential with inner structure”, Eurasian J. Math. Comput. Appl., 6:1 (2018), 4–10
  27. E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, E. Segrè, “Artificial radioactivity produced by neutron bombardment–II”, Proc. Roy. Soc. London Ser. A, 149:868 (1935), 522–558
  28. A. Kirsch, “The denseness of the far field patterns for the transmission problem”, IMA J. Appl. Math., 37:3 (1986), 213–225
  29. D. Colton, P. Monk, “The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium”, Quart. J. Mech. Appl. Math., 41:1 (1988), 97–125
  30. F. Cakoni, H. Haddar, “Transmission eigenvalues”, Inverse Problems, 29:10 (2013), 100201, 3 pp.
  31. B. P. Rynne, B. D. Sleeman, “The interior transmission problem and inverse scattering from inhomogeneous media”, SIAM J. Math. Anal., 22:6 (1991), 1755–1762
  32. E. Lakshtanov, B. Vainberg, “Weyl type bound on positive interior transmission eigenvalues”, Comm. Partial Differential Equations, 39:9 (2014), 1729–1740
  33. F. Cakoni, Hoai-Minh Nguyen, “On the discreteness of transmission eigenvalues for the Maxwell equations”, SIAM J. Math. Anal., 53:1 (2021), 888–913

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Гриневич П.G., Новиков Р.G.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».