Trace formula for the magnetic Laplacian at zero energy level
- Authors: Kordyukov Y.A.1
-
Affiliations:
- Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences
- Issue: Vol 77, No 6 (2022)
- Pages: 159-202
- Section: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/142325
- DOI: https://doi.org/10.4213/rm10078
- ID: 142325
Cite item
Abstract
About the authors
Yuri Arkadevich Kordyukov
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences
Email: yurikor@matem.anrb.ru
Doctor of physico-mathematical sciences, Associate professor
References
- R. Balian, C. Bloch, “Solution of the Schrödinger equation in term of classical paths”, Ann. Physics, 85:2 (1974), 514–545
- V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237
- F. A. Berezin, “General concept of quantization”, Comm. Math. Phys., 40:2 (1975), 153–174
- J.-M. Bismut, “Demailly's asymptotic Morse inequalities: a heat equation proof”, J. Funct. Anal., 72:2 (1987), 263–278
- J.-M. Bismut, G. Lebeau, “Complex immersions and Quillen metrics”, Inst. Hautes Etudes Sci. Publ. Math., 74 (1991), 1–297
- M. Bordemann, E. Meinrenken, M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and $operatorname{gl}(N)$, $Ntoinfty$ limits”, Comm. Math. Phys., 165:2 (1994), 281–296
- D. Borthwick, A. Uribe, “Almost complex structures and geometric quantization”, Math. Res. Lett., 3:6 (1996), 845–861
- D. Borthwick, A. Uribe, “The semiclassical structure of low-energy states in the presence of a magnetic field”, Trans. Amer. Math. Soc., 359:4 (2007), 1875–1888
- Th. Bouche, “Convergence de la metrique de Fubini–Study d'un fibre lineaire positif”, Ann. Inst. Fourier (Grenoble), 49 (1990), 117–130
- L. Boutet de Monvel, “Hypoelliptic operators with double characteristics and related pseudo-differential operators”, Comm. Pure Appl. Math., 27 (1974), 585–639
- L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Ann. of Math. Stud., 99, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981, v+161 pp.
- L. Boutet de Monvel, J. Sjöstrand, “Sur la singularite des noyaux de Bergman et de Szegő”, Journees: Equations aux derivees partielles de Rennes (1975), Asterisque, 34-35, Soc. Math. France, Paris, 1976, 123–164
- R. Brummelhuis, T. Paul, A. Uribe, “Spectral estimates around a critical level”, Duke Math. J., 78:3 (1995), 477–530
- R. Brummelhuis, A. Uribe, “A semi-classical trace formula for Schrödinger operators”, Comm. Math. Phys., 136:3 (1991), 567–584
- B. Camus, “A semi-classical trace formula at a non-degenerate critical level”, J. Funct. Anal., 208:2 (2004), 446–481
- B. Camus, “A semi-classical trace formula at a totally degenerate critical level”, Comm. Math. Phys., 247:2 (2004), 513–526
- B. Camus, “Contributions of non-extremum critical points to the semi-classical trace formula”, J. Funct. Anal., 217:1 (2004), 79–102
- B. Camus, “Semiclassical spectral estimates for Schrödinger operators at a critical energy level. Case of a degenerate minimum of the potential”, J. Math. Anal. Appl., 341:2 (2008), 1170–1180
- A. M. Charbonnel, G. Popov, “A semi-classical trace formula for several commuting operators”, Comm. Partial Differential Equations, 24:1-2 (1999), 283–323
- L. Charles, Landau levels on a compact manifold, 2022 (v1 – 2020), 60 pp.
- L. Charles, On the spectrum of non degenerate magnetic Laplacian, 2021, 58 pp.
- J. Chazarain, “Formule de Poisson pour les varietes riemanniennes”, Invent. Math., 24 (1974), 65–82
- Y. Colin de Verdière, “Spectre du laplacien et longueurs des geodesiques periodiques. I”, Compositio Math., 27 (1973), 83–106
- Y. Colin de Verdière, “Spectre du laplacien et longueurs des geodesiques periodiques. II”, Compositio Math., 27 (1973), 159–184
- Y. Colin de Verdière, “Spectre conjoint d'operateurs pseudo-differentiels qui commutent. I. Le cas non integrable”, Duke Math. J., 46:1 (1979), 169–182
- Y. Colin de Verdière, “Spectrum of the Laplace operator and periodic geodesics: thirty years after”, Ann. Inst. Fourier (Grenoble), 57:7 (2007), 2429–2463
- M. Combescure, J. Ralston, D. Robert, “A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition”, Comm. Math. Phys., 202:2 (1999), 463–480
- Xianzhe Dai, Kefeng Liu, Xiaonan Ma, “On the asymptotic expansion of Bergman kernel”, J. Differential Geom., 72:1 (2006), 1–41
- J.-P. Demailly, “Champs magnetiques et inegalites de Morse pour la $d"$-cohomologie”, Ann. Inst. Fourier (Grenoble), 35:4 (1985), 189–229
- J.-P. Demailly, “Holomorphic Morse inequalities”, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, 93–114
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999, xi+227 pp.
- S. Dozias, “Clustering for the spectrum of $h$-pseudodifferential operators with periodic flow on an energy surface”, J. Funct. Anal., 145:2 (1997), 296–311
- J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79
- F. Faure, M. Tsujii, Prequantum transfer operator for symplectic Anosov diffeomorphism, Asterisque, 375, Soc. Math. France, Paris, 2015, ix+222 pp.
- S. Fournais, B. Helffer, Spectral methods in surface superconductivity, Progr. Nonlinear Differential Equations Appl., 77, Birkhäuser Boston, Inc., Boston, MA, 2010, xx+324 pp.
- V. W. Guillemin, “Symplectic spinors and partial differential equations”, Geometrie symplectique et physique mathematique (Aix-en-Provence, 1974), Editions CNRS, Paris, 1975, 217–252
- V. Guillemin, Sh. Sternberg, Semi-classical analysis, International Press, Boston, MA, 2013, xxiv+446 pp.
- V. Guillemin, A. Uribe, “The Laplace operator on the $n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $n$”, Asymptotic Anal., 1:2 (1988), 105–113
- V. Guillemin, A. Uribe, “Circular symmetry and the trace formula”, Invent. Math., 96:2 (1989), 385–423
- V. Guillemin, A. Uribe, Z. Wang, “Semiclassical states associated with isotropic submanifolds of phase space”, Lett. Math. Phys., 106:12 (2016), 1695–1728
- V. W. Guillemin, A. Uribe, Zuoqin Wang, “Integral representations of isotropic semiclassical functions and applications”, J. Spectr. Theory, 12:1 (2022), 227–258
- M. C. Gutzwiller, “Periodic orbits and classical quantization conditions”, J. Math. Phys., 12 (1971), 343–358
- M. C. Gutzwiller, Chaos in classical and quantum mechanics, Interdiscip. Appl. Math, 1, Springer-Verlag, New York, 1990, xiv+432 pp.
- B. Helffer, Yu. A. Kordyukov, “Semiclassical analysis of Schrödinger operators with magnetic wells”, Spectral and scattering theory for quantum magnetic systems, Contemp. Math., 500, Amer. Math. Soc., Providence, RI, 2009, 105–121
- B. Helffer, Yu. A. Kordyukov, “Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field”, Geometric methods in physics, Trends Math., Birkhäuser/Springer, Cham, 2014, 259–278
- B. Helffer, J. Sjöstrand, “Equation de Schrödinger avec champ magnetique et equation de Harper”, Schrödinger operators (Sonderborg, 1988), Lecture Notes in Phys., 345, Springer, Berlin, 1989, 118–197
- L. Ioos, Wen Lu, Xiaonan Ma, G. Marinescu, “Berezin–Toeplitz quantization for eigenstates of the Bochner Laplacian on symplectic manifolds”, J. Geom. Anal., 30:3 (2020), 2615–2646
- D. Khuat-Duy, “A semi-classical trace formula for Schrödinger operators in the case of a critical energy level”, J. Funct. Anal., 146:2 (1997), 299–351
- Ю. А. Кордюков, “Об асимптотических разложениях обобщенных ядер Бергмана на симплектических многообразиях”, Алгебра и анализ, 30:2 (2018), 163–187
- Yu. A. Kordyukov, “Semiclassical spectral analysis of the Bochner–Schrödinger operator on symplectic manifolds of bounded geometry”, Anal. Math. Phys., 12:1 (2022), 22, 37 pp.
- Yu. A. Kordyukov, “Berezin–Toeplitz quantization asssociated with higher Landau levels of the Bochner Laplacian”, J. Spectr. Theory, 12:1 (2022), 143–167
- Yu. A. Kordyukov, Semiclassical asymptotic expansions for functions of the Bochner–Schrödinger operator, 2022, 24 pp.
- Yu. A. Kordyukov, Xiaonan Ma, G. Marinescu, “Generalized Bergman kernels on symplectic manifolds of bounded geometry”, Comm. Partial Differential Equations, 44:11 (2019), 1037–1071
- Ю. А. Кордюков, И. А. Тайманов, “Формула следа для магнитного лапласиана”, УМН, 74:2(446) (2019), 149–186
- Ю. А. Кордюков, И. А. Тайманов, “Квазиклассическое приближение для магнитных монополей”, УМН, 75:6(456) (2020), 85–106
- Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian on a compact hyperbolic surface”, Regul. Chaotic Dyn., 27:4 (2022), 460–476
- С. З. Левендорский, “Неклассические спектральные асимптотики”, УМН, 43:1(259) (1988), 123–157
- Xiaonan Ma, G. Marinescu, “The $mathrm{spin}^c$ Dirac operator on high tensor powers of a line bundle”, Math. Z., 240:3 (2002), 651–664
- Xiaonan Ma, G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progr. Math., 254, Birkhäuser Verlag, Basel, 2007, xiv+422 pp.
- Xiaonan Ma, G. Marinescu, “Generalized Bergman kernels on symplectic manifolds”, Adv. Math., 217:4 (2008), 1756–1815
- Xiaonan Ma, G. Marinescu, “Toeplitz operators on symplectic manifolds”, J. Geom. Anal., 18:2 (2008), 565–611
- Xiaonan Ma, G. Marinescu, “Exponential estimate for the asymptotics of Bergman kernels”, Math. Ann., 362:3-4 (2015), 1327–1347
- Xiaonan Ma, G. Marinescu, S. Zelditch, “Scaling asymptotics of heat kernels of line bundles”, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math., 644, Amer. Math. Soc., Providence, RI, 2015, 175–202
- G. Marinescu, N. Savale, Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface, 2018, 49 pp.
- В. П. Маслов, Комплексный метод ВКБ в нелинейных уравнениях, Наука, М., 1977, 384 с.
- E. Meinrenken, “Semiclassical principal symbols and Gutzwiller's trace formula”, Rep. Math. Phys., 31:3 (1992), 279–295
- E. Meinrenken, “Trace formulas and the Conley–Zehnder index”, J. Geom. Phys., 13:1 (1994), 1–15
- A. Melin, J. Sjöstrand, “Fourier integral operators with complex-valued phase functions”, Fourier integral operators and partial differential equations (Univ. Nice, Nice, 1974), Lecture Notes in Math., 459, Springer, Berlin, 1975, 120–223
- L. Morin, A semiclassical Birkhoff normal form for constant-rank magnetic fields, 2021 (v1 – 2020), 36 pp.
- L. Morin, “A semiclassical Birkhoff normal form for symplectic magnetic wells”, J. Spectr. Theory, 12:2 (2022), 459–496
- L. Morin, “Review on spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle”, Confluentes Math., 14:1 (2022), 65–79
- С. П. Новиков, “Гамильтонов формализм и многозначный аналог теории Морса”, УМН, 37:5(227) (1982), 3–49
- С. П. Новиков, И. Шмельцер, “Периодические решения уравнений Кирхгофа для свободного движения твердого тела в жидкости и расширенная теория Люстерника–Шнирельмана–Морса (ЛШМ). I”, Функц. анализ и его прил., 15:3 (1981), 54–66
- С. П. Новиков, И. А. Тайманов, “Периодические экстремали многозначных или не всюду положительных функционалов”, Докл. АН СССР, 274:1 (1984), 26–28
- J.-P. Ortega, T. S. Ratiu, Momentum maps and Hamiltonian reduction, Progr. Math., 222, Birkhäuser Boston, Inc., Boston, MA, 2004, xxxiv+497 pp.
- T. Paul, A. Uribe, “The semi-classical trace formula and propagation of wave packets”, J. Funct. Anal., 132:1 (1995), 192–249
- V. Petkov, G. Popov, “Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators”, Ann. Inst. H. Poincare Phys. Theor., 68:1 (1998), 17–83
- N. Raymond, Bound states of the magnetic Schrödinger operator, EMS Tracts in Math., 27, Eur. Math. Soc. (EMS), Zürich, 2017, xiv+380 pp.
- N. Savale, “Koszul complexes, Birkhoff normal form and the magnetic Dirac operator”, Anal. PDE, 10:8 (2017), 1793–1844
- N. Savale, “A Gutzwiller type trace formula for the magnetic Dirac operator”, Geom. Funct. Anal., 28:5 (2018), 1420–1486
- А. Зельберг, “Гармонический анализ и дискретные группы в слабосимметрических римановых пространствах; приложения к теории рядов Дирихле”, Математика, 1:4 (1957), 3–28
- J. Sjöstrand, M. Zworski, “Quantum monodromy and semi-classical trace formulae”, J. Math. Pures Appl. (9), 81:1 (2002), 1–33
- И. А. Тайманов, “Принцип перекидывания циклов в теории Морса–Новикова”, Докл. АН СССР, 268:1 (1983), 46–50
- И. А. Тайманов, “Несамопересекающиеся замкнутые экстремали многозначных или не всюду положительных функционалов”, Изв. АН СССР. Сер. матем., 55:2 (1991), 367–383
- И. А. Тайманов, “Замкнутые экстремали на двумерных многообразиях”, УМН, 47:2(284) (1992), 143–185
- И. А. Тайманов, “Замкнутые несамопересекающиеся экстремали многозначных функционалов”, Сиб. матем. журн., 33:4 (1992), 155–162
- S. Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Math., 1821, Springer-Verlag, Berlin, 2003, vi+236 pp.
- A. Uribe, “Trace formulae”, First summer school in analysis and mathematical physics (Cuernavaca Morelos, 1998), Contemp. Math., 260, Aportaciones Mat., Amer. Math. Soc., Providence, RI, 2000, 61–90
Supplementary files
