开放存取 开放存取  受限制的访问 ##reader.subscriptionAccessGranted##  受限制的访问 订阅存取

卷 79, 编号 1 (2024)

封面

完整期次

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

Besov spaces in operator theory

Peller V.

摘要

Обзор посвящён разнообразным применениям пространств Бесова в теории операторов. Показывается, как классы Бесова применяются при описании операторов Ганкеля, принадлежащих классам Шаттена–фон Неймана; рассматриваются различные приложения. Далее обсуждается роль классов Бесова в оценках норм полиномов от операторов с ограниченными степенями в гильбертовом пространстве и связанные с этим оценки ганкелевых матриц в тензорных произведениях пространств $\ell^1$ и $\ell^\infty$. Большая часть обзора посвящена роли пространств Бесова в различных задачах теории возмущений при изучении поведения функций от одного оператора или от набора операторов при их возмущении. Библиография: 107 названий.
Uspekhi Matematicheskikh Nauk. 2024;79(1):3-58
pages 3-58 views

Voronoi formulae and Gauss problem

Popov D.

摘要

Работа содержит классические и новые результаты, касающиеся свойств остаточного члена в проблеме круга. Доказательства приведенных результатов основаны на применении различных вариантов формулы Г. Ф. Вороного. Библиография: 54 названия.
Uspekhi Matematicheskikh Nauk. 2024;79(1):59-134
pages 59-134 views

Morse–Smale diffemorphisms with non-wandering points with pairwise different indices on 3-manifolds

Pochinka O., Talanova E.

摘要

In this paper, we consider a class $G$ of orientation-preserving Morse-Smale diffeomorphisms $f$, which are defined on a closed 3-manifold $M^3$ and whose non-wandering set consists of four fixed points with pairwise different Morse indices. It follows from the results of the work of S. Smale and K. Meyer that all gradient-like flows with similar properties have a Morse energy function with four critical points of pairwise different Morse indices. This means that the supporting manifold $M^3$ for these flows admits a Heegaar decomposition of genus 1 and, therefore, it is homeomorphic to the lens space $L_{p, q}$. Despite the simple structure of the non-wandering set of diffeomorphisms in the class $G$, there are diffeomorphisms with wildly embedded separatrices. According to the results of V. Grines, F. Laudenbach, O. Pochinka, such diffeomorphisms do not have an energy function, and the question of the topology of their ambient manifold remains open. According to the results of V. Grines, E. Zhuzhoma and V. Medvedev, $M^3$ is homeomorphic to the lens space $L_{p, q}$ in the case of tame embedding of closures of one-dimensional separatrices of the diffeomorphism $f\in G$. Moreover, the wandering set of the diffeomorphism $f$ contains at least $p$ of non-compact heteroclinic curves. In this paper, a similar result is obtained for arbitrary diffeomorphisms of the class $G$. Diffeomorphisms from the class $G$ with wild embedding of one-dimensional separatrices are constructed on each lens space $L_{p, q}$. Such examples were previously known only on the 3-sphere. It is also established that the topological conjugacy of diffeomorphisms of class $G$ with a single non-compact heteroclinic curve is completely determined by the equivalence of Hopf knots, which are the projection of a one-dimensional saddle separatrix into the space of the orbits of the sink basin. Moreover, any Hopf knot $L$ is realized by such a diffeomorphism. In this sense, the result obtained is similar to classification of D. Pixton's diffeomorphisms obtained by Ch. Bonatti and V. Grines.
Uspekhi Matematicheskikh Nauk. 2024;79(1):135-184
pages 135-184 views

Curvature and isometries of Lorentzian Lobachevsky plane

Sachkov Y.
Uspekhi Matematicheskikh Nauk. 2024;79(1):185-186
pages 185-186 views

Dynamics of replicator equations in Wardrop-optimal networks

Bagdasaryan A., Kalampakas A., Saburov M.
Uspekhi Matematicheskikh Nauk. 2024;79(1):187-188
pages 187-188 views

Bitopological models of intuitionistic epistemic logic

Onoprienko A.
Uspekhi Matematicheskikh Nauk. 2024;79(1):189-190
pages 189-190 views

Third Conference of Mathematical Centers of Russia

Andreev N., Boichenko S., Gorchinskiy S., Kozlov V., Lukoyanov N., Mamiy D., Orlov D., Raigorodskii A.
Uspekhi Matematicheskikh Nauk. 2024;79(1):191-194
pages 191-194 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».