Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 78, № 1 (2023)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base

Бандман Т., Зархин Ю.Г.

Аннотация

In this survey we discuss holomorphic $\mathbb{P}^1$-bundles $p\colon X \to Y$ over a non-uniruled complex compact Kähler manifold $Y$, paying a special attention to the case when $Y$ is a complex torus. We consider the groups $\operatorname{Aut}(X)$ and $\operatorname{Bim}(X)$ of its biholomorphic and bimeromorphic automorphisms, respectively, and discuss when these groups are bounded, Jordan, strongly Jordan, or very Jordan.Bibliography: 88 titles.
Успехи математических наук. 2023;78(1):3-66
pages 3-66 views

Левоинвариантные задачи оптимального управления на группах Ли, интегрируемые в эллиптических функциях

Сачков Ю.Л.

Аннотация

Левоинвариантные задачи оптимального управления на группах Ли образуют важный класс задач с большой группой симметрий. Они интересны в теоретическом плане, так как часто допускают полное исследование и на этих модельных задачах можно изучить общие закономерности. В частности, задачи на нильпотентных группах Ли доставляют фундаментальную нильпотентную аппроксимацию общих задач. Левоинвариантные задачи также часто возникают в приложениях: в классической и квантовой механике, геометрии, робототехнике, моделях зрения и обработке изображений. Цель данной работы – дать обзор основных понятий, методов и результатов, относящихся к левоинвариантным задачам оптимального управления на группах Ли, интегрируемым в эллиптических функциях. Основное внимание уделено описанию экстремальных траекторий и их оптимальности, времени разреза и множества разреза, оптимального синтеза. Библиография: 162 названия.
Успехи математических наук. 2023;78(1):67-166
pages 67-166 views

О сильной и слабой ассоциированности весовых пространств Соболева первого порядка

Степанов В.Д., Ушакова Е.П.

Аннотация

В работе дан краткий обзор недавних результатов по проблеме характеризации ассоциированных и дважды ассоциированных пространств к функциональным классам, включающим как идеальные, так и неидеальные структуры. К числу последних относятся двухвесовые пространства Соболева первого порядка на положительной полуоси. Показано, что, в отличие от понятия двойственности, ассоциированность может быть “сильной” и “слабой”. При этом дважды ассоциированные пространства делятся еще на три типа. В этом контексте установлено, что пространство Соболева функций с компактным носителем обладает слабой ассоциированной рефлексивностью, а сильно ассоциированное к слабому ассоциированному пространству состоит только из нуля. Аналогичными свойствами обладают весовые классы типа Чезаро и Копсона, для которых проблема изучена полностью и установлена их связь с пространствами Соболева со степенными весами. В качестве приложения рассмотрена задача об ограниченности преобразования Гильберта из весового пространства Соболева в весовое пространство Лебега. Библиография: 49 названий.
Успехи математических наук. 2023;78(1):167-204
pages 167-204 views

Игорь Моисеевич Кричевер (некролог)

Бухштабер В.М., Новиков С.П., Тайманов И.А.
Успехи математических наук. 2023;78(1):205-206
pages 205-206 views

Циклические фробениусовы алгебры

Бухштабер В.М., Михайлов А.В.
Успехи математических наук. 2023;78(1):207-208
pages 207-208 views

Число компонент уравнений Пелля–Абеля с примитивным решением заданной степени

Богатырёв А.Б., Жандрон К.
Успехи математических наук. 2023;78(1):209-210
pages 209-210 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».