Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 65, No 2 (2025)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

General numerical methods

DERIVATION OF LOWER ERROR BOUNDS FOR THE BILINEAR FINITE ELEMENT METHOD WITH A WEIGHT FOR THE ONE-DIMENSIONAL WAVE EQUATION

Zlotnik A.A.

Abstract

We study a three-level in time bilinear finite element method with weight for an initial-boundary value problem for the one-dimensional wave equation. We derive lower error estimates of orders (h + τ)2λ/3, 0 ⩽ λ ⩽ 3 in the L1 and W1,1 h norms. In them, each of the two initial functions or the free term in the equation belongs to Holder-type spaces of the corresponding orders of smoothness. They substantiate the accuracy in ¨ order of the corresponding known error estimates (from above) of the finite element method with a weight of the second-order approximation for second-order hyperbolic equations, as well as the impossibility of improving them with the maximum weakening of the degree of summability in the error norms and its maximum strengthening in the data norms. The derivation is based on the Fourier method.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):140-149
pages 140-149 views

SPECTRAL METHODS OF POLYNOMIAL INTERPOLATION AND APPROXIMATION

Varin V.P.

Abstract

The classical problem of interpolation and approximation of functions by polynomials is considered here as a special case of spectral representation of functions. This approach was previously developed by us for the orthogonal Legendre and Chebyshev polynomials. Here, we use fundamental Newton polynomials as basis functions. It is shown that the spectral approach has computational advantages over the divided difference method. In a number of problems, Newton and Hermite interpolations are indistinguishable with our approach and are calculated using the same formulas. Also, the computational algorithms that we proposed earlier using orthogonal polynomials are transferred without changes to Newton and Hermite polynomials.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):150-161
pages 150-161 views

Partial Differential Equations

CHEBYSHEV SPECTRAL METHOD FOR ONE CLASS OF SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS

Rasol’ko G.A., Volkov V.M.

Abstract

An approximate numerical method for solving singular integro-differential equations of the generalized Prandtl equation type has been developed. The proposed approximate schemes are based on representing the solution and coefficients of the equation as an expansion over an orthogonal basis of Chebyshev polynomials. The use of known spectral relations has made it possible to obtain an analytical expression for the singular component of the equation. As a consequence, the proposed method demonstrates excellent accuracy and exponential rate of convergence of the approximate solution relative to the degree of interpolation polynomials. The computational qualities of the proposed method are demonstrated using a test example.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):162-171
pages 162-171 views

Mathematical physics

FINITE FREQUENCY PROBING CAPABILITIES

Barashkov A.S.

Abstract

A two-dimensional medium in which the fields are described by the Helmholtz equation is considered. A linearized formulation of the problem is studied, which ultimately reduces to reconstructing the unknown right-hand side of the inhomogeneous Helmholtz equation in an infinite strip. The specified right-hand side in this work is taken as a sum of delta functions, which can be interpreted as the total conductivities of thin layers. The values of the solution of the Helmholtz equation and the normal derivative of the solution at the band boundary for several values of the parameter in the Helmholtz equation are used as information for solving the inverse problem. These data can be interpreted as the values of the electric and magnetic field strengths at the band boundary for a finite set of frequencies. Using the Fourier series expansion, an integral equation is obtained that relates the sought quantities to the data for solving the inverse problem. Using the Fourier transform, the conditions for the uniqueness of the solution of the inverse problem are established. Along with this, examples of the multivalued nature of the solution of the inverse problem in unexpected situations are given.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):172-179
pages 172-179 views

STUDY OF NON-DISSIPATIVE STRUCTURES OF DISCONTINUITIES FOR MICROPOLAR MAGNETOELASTIC MEDIUM EQUATIONS AND DEVELOPMENT OF A GENERAL APPROACH TO NUMERICAL SOLUTION OF EVOLUTIONARY PARTICULAR DIFFERENTIAL EQUATIONS

Bakholdin I.B.

Abstract

Numerical solutions of magnetoelasticity equations are considered. A numerical scheme based on central differences for spatial derivatives and the fourth-order Runge-Kutta method for time derivatives is used. The initial data are solitary wave and smoothed step data (problem of discontinuity decay). The study is carried out from simpler equations to more complex ones. New types of discontinuity structures are identified, and the conditions for the correctness of the equations are investigated.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):180-192
pages 180-192 views

EXACT SOLUTION OF A BICOMPACT DIFFERENCE SCHEME FOR THE SYSTEM OF MAXWELL EQUATIONS

Belov A.A., Dombrovskaya Z.O.

Abstract

One-dimensional problems for the system of Maxwell equations cover a wide range of important applied problems. Among them are problems of photonics, plasmonics, microwave technology, etc. For such problems, we previously proposed a bicompact (two-point completely conservative) difference scheme. An exact solution to the corresponding system of grid equations is constructed. It is applicable to problems in piecewise homogeneous media with an arbitrary configuration of volume and surface currents. The constructed solution makes it possible to dramatically reduce the labor intensity of calculating such problems.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):193-202
pages 193-202 views

NUMERICAL ANALYSIS OF THE STABILITY LOSS FOR POISEUILLE-TYPE POLYMER FLUID FLOWS UNDER THE PULSED EFFECT OF PRESSURE AND TEMPERATURE

Semisalov B.V., Bugoets I.A., Kutkin L.I., Shapeev V.P.

Abstract

A system of non-stationary partial differential equations is obtained that describes non-isothermal Poiseuille-type flows of an incompressible viscoelastic polymer fluid in a channel with a cross-section between two confocal ellipses. For the system we posed an initial boundary value problem that describes the flow in a 3D printer nozzle with a heating element under the pulsed action of the pressure gradient in the nozzle and of the temperature of the element. For the numerical solution of the problem, an algorithm is developed that takes into account the singularities of the sought-for functions and is based on polynomial and rational approximations in spatial variables and on the use of an implicit difference scheme in time. The distributions of the velocity and temperature of the fluid in the channel, as well as the dependences of the flow rate and of the average temperature on time are studied, the critical relationships between the values of the amplitudes and durations of impulses acting on the fluid, when setting which the flow loses stability, are calculated.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):203-221
pages 203-221 views

COMBINING THE GRID-CHARACTERISTIC METHOD WITH THE DISCONTINUOUS GALERKIN METHOD FOR MODELING WAVE PROPAGATION IN LINEAR ELASTIC MEDIA IN THE THREE-DIMENSIONAL CASE

Favorskaya A.V., Petrov I.B., Kozhemyachenko A.A.

Abstract

This paper considers an example of the combined use of the grid-characteristic method on regular structured computational grids and the discontinuous Galerkin method on tetrahedral grids to solve a three-dimensional direct problem of elastic wave propagation in a geological medium consisting of four layers represented as a linear-elastic medium with different parameters and arbitrary curvilinear boundaries. A special algorithm is used to stitch the numerical methods, taking into account the features of the transition from an irregular tetrahedral computational grid to a regular structured computational grid in three-dimensional space. A comparative analysis of the convergence of the resulting combined method with the grid-characteristic method on curvilinear structured computational grids is given depending on the change in the step in spatial directions. The wave field of the modulus of the disturbance propagation velocity from the source is obtained.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):222-234
pages 222-234 views

Computer science

SUFFICIENT SAMPLE SIZE: LIKELIHOOD BOOTTRAPPING

Kiselev N.S., Grabovoi A.V.

Abstract

Determining the appropriate sample size is crucial for building effective machine learning models. Existing methods often either lack a rigorous theoretical basis or are tied to specific statistical hypotheses about the model parameters. In this paper, we present two new methods based on likelihood values on bootstrapped subsamples. We demonstrate the correctness of one of these methods in a linear regression model. Computational experiments with both synthetic and real datasets show that the proposed functions converge as the sample size increases, highlighting the practical usefulness of the approach.
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki. 2025;65(2):235-242
pages 235-242 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».