Обмен веществ и половое созревание

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Питание человека влияет на половое созревание. Характер питания определяется социально-экономическими условиями общества и семьи, генетическими и эпигенетическими факторами. Микро- и макронутриенты, гормоны модулируют рост и/или сигнализируют о статусе питания и энергии, доступной для роста и созревания. Начало полового созревания задерживается в ответ на хронический дефицит энергии и ускоряется при ее избытке. Позднее половое созревание повышает вероятность сердечно-сосудистых, скелетно-мышечных и нейрокогнитивных расстройств. Раннее половое созревание является фактором риска ожирения, сахарного диабета типа 2, некоторых видов рака. Авторы обсуждают механизмы, определяющие влияние питания и обмена веществ на половое развитие, нарушения пубертата при дефектах метаболизма при хронических заболеваниях.

Об авторах

В. М. Делягин

Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздрава России

Автор, ответственный за переписку.
Email: delyagin-doktor@yandex.ru
ORCID iD: 0000-0001-8149-7669
SPIN-код: 8635-8777

доктор медицинских наук, профессор

Россия, Москва

Ю. В. Скворцова

Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздрава России

Email: delyagin-doktor@yandex.ru
ORCID iD: 0000-0002-0566-053X
SPIN-код: 9027-8984

доктор медицинских наук, профессор

Россия, Москва

Э. Р. Султанова

Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздрава России

Email: delyagin-doktor@yandex.ru
ORCID iD: 0000-0003-0319-3699
Россия, Москва

Список литературы

  1. Румянцев А.Г., Тимакова М.В., Чечельницкая С.М. Наблюдение за развитием и состоянием здоровья детей. (Руководство для врачей). М.: Медпрактика-М, 2004; 388 с. [Rumyantsev A.G., Timakova M.V., Chechelnitskaya S.M. Monitoring the development and health of children. (Guide for doctors). M.: Medpraktika-M, 2004, 388 p. (in Russ.)].
  2. Argente J., Dumkel L., Kaiser U. et al. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol. 2023; 11 (3): 203–16. doi: 10.1016/S2213-8587(22)00339-4
  3. Amiri M., Mousavi M., Azizi F. et al. The relationship of reproductive factors with adiposity and body shape indices changes overtime: findings from a community-based study. J Transl Med. 2023; 21: 137. doi: 10.1186/s12967-023-04000-1
  4. Widén E., Silventoinen K., Sovio U. et al. Pubertal timing and growth influences cardiometabolic risk factors in adult males and females. Diabetes Care. 2012; 35 (4): 850–6. doi: 10.2337/dc11-1365
  5. Goldberg M., D’Aloisio A., O’Brien K.M. et al. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res. 2020; 22: 112. doi: 10.1186/s13058-020-01326-2
  6. Bauman D. Impact of obesity on female puberty and pubertal disorders. Best Pract Res Clinl Obstet Gynaecol. 2024; 91: 102400. doi: 10.1016/j.bpobgyn.2023.102400
  7. Zhu J., Kusa T., Chan Y-M. Genetics of Pubertal Timing. Curr Opin Pediatr. 2018; 30 (4): 532–40. doi: 10.1097/MOP.0000000000000642
  8. Mancini A., Magnotto J., Abreu A. Genetics of pubertal timing. Best Pract Res Clin Endocrinol Metab. 2022; 36 (1): 101618. doi: 10.1016/j.beem.2022.101618
  9. Anderson G., Hill J., Kaiser U. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra’s seminal work. Nat Rev Endocrinol. 2024; 20: 111–23. doi: 10.1038/s41574-023-00919-z
  10. Vazquez M., Daza-Dueñas S., Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc. 2021; 5 (11): bvab152. doi: 10.1210/jendso/bvab152
  11. Day F., Thompson D., Helgason H. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet. 2017; 49: 834–41. doi: 10.1038/ng.3841
  12. Kentistou K., Kaisinger L., Stankovic S. et al. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Nat Genet. 2024; 56 (7): 1397–411. doi: 10.1038/s41588-024-01798-4
  13. Simon D., Ba I., Mekhail N. et al. Mutations in the maternally imprinted gene MKRN3 are common in familial central precocious puberty. Eur J Endocrinol. 2016; 174 (1): 1–8. doi: 10.1530/EJE-15-0488
  14. Aycan Z., Savaş-Erdeve1 S., Elvan Bayramoğlu E. et al. Investigation of MKRN3 Mutation in Patients with Familial Central Precocious Puberty. J Clin Res Pediatr Endocrinol. 2018; 10 (3): 223–9. doi: 10.4274/jcrpe.5506
  15. Cousminer D. Pubertal timing and body mass: Genes involved. Current Opinion in Endocrine and Metabolic Research. 2020; 14: 117–26. doi: 10.1016/j.coemr.2020.06.011
  16. Silventoinen K., Jelenkovic A., Palviainen T. et al. The Association Between Puberty Timing and Body Mass Index in a Longitudinal Setting: The Contribution of Genetic Factors. Behav Genet. 2022; 52: 186–94. doi: 10.1007/s10519-022-10100-3
  17. Perry J., Day F., Elks C. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014; 514 (7520): 92–7. doi: 10.1038/nature13545
  18. Faienza M., Urbano F., Moscogiuri L. et al. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol. 2022; 13: 1019468. doi: 10.3389/fendo.2022.1019468
  19. Yu X., Xu J., Song B. et al. The role of epigenetics in women’s reproductive health: the impact of environmental factors. Front Endocrinol. 2024; 15: 1399757. doi: 10.3389/fendo.2024.1399757
  20. Yang Sh., Zhang Li., Khan K. et al. Identification of Environmental Compounds That May Trigger Early Female Puberty by Activating Human GnRHR and KISS1R. Endocrinology. 2024; 165 (10): bqae103. doi: 10.1210/endocr/bqae103
  21. Paulsen M., Ferguson-Smit A. DNA methylation in genomic imprinting, development, and disease. J Pathol. 2001; 195 (1): 97–110. doi: 10.1002/path.890
  22. Lopez I., Cernada M., Gakan L. et al. Small for gestational age: concept, diagnosis and neonatal characterization, follow-up and recommendations. Recién nacido pequeño para la edad gestacional: concepto, diagnóstico y caracterización neonatal, seguimiento y recomendaciones. Anales de Pediatria (English Edition). 2024; 101 (2): 124–31. doi: 10.1016/j.anpede.2024.07.012
  23. Suutela M., Hero M., Kosola S. et al. Prenatal, newborn and childhood factors and the timing of puberty in boys and girls. Pediatr Res. 2024; 96: 799–804. DOI: 0.1038/s41390-024-03159-7
  24. Maisonet M., Christensen K., Rubin C. et al. Role of prenatal characteristics and early growth on pubertal attainment of British girls. Pediatrics. 2010; 126 (3): e591–600. doi: 10.1542/peds.2009-2636
  25. Toppari J., Juul A. Trends in puberty timing in humans and environmental modifiers. Mol Cell Endocrinol. 2010; 324 (1-2): 39–44. doi: 10.1016/j.mce.2010.03.011
  26. Lee R., Oh J., Mun E. et al. Exposure to air pollution and precocious puberty: a systematic review. Ewha Med J. 2024; 47 (2): e20. doi: 10.12771/emj.2024.e20
  27. Leka-Emiri S., Chrousos G., Kanaka-Gantenbein Ch. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP). J Endocrinol Invest. 2017; 40: 789–802. doi: 10.1007/s40618-017-0627-9
  28. Cabrera S., Bright G., Frane J. et al. Age of thelarche and menarche in contemporary US females: a cross-sectional analysis. J Pediatr Endocrinol Metab. 2014; 27 (1-2): 47–51. doi: 10.1515/jpem-2013-0286
  29. Staiano A., Katzmarzyk P. Visceral, subcutaneous, and total fat mass accumulation in a prospective cohort of adolescents. Am J Clin Nutr. 2022; 116 (3): 780–5. doi: 10.1093/ajcn/nqac129
  30. Wang Z., Asokan G., Onnela J.-P. et al. Menarche and Time to Cycle Regularity Among Individuals Born Between 1950 and 2005 in the US. JAMA Netw Open. 2024; 7 (5): e2412854. doi: 10.1001/jamanetworkopen.2024.12854
  31. Cho H., Patel S., Rajbhandari P. Adipose tissue lipid metabolism: lipolysis. Curr Opin Genet Dev. 2023; 83: 102114. doi: 10.1016/j.gde.2023.102114
  32. Elias C., Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci. 2013; 70 (5): 841–62. doi: 10.1007/s00018-012-1095-1
  33. Ahima R., Lazar M. Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. 2008; 22 (5): 1023–31. doi: 10.1210/me.2007-0529
  34. Casado M., Collado-Pérez R., Frago L. et al. Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci. 2023; 24 (2): 1422. doi: 10.3390/ijms24021422
  35. Malik I., Durairajanayagam D., Singh H. Leptin and its actions on reproduction in males. Asian J Androl. 2019; 21 (3): 296–9. doi: 10.4103/aja.aja_98_18
  36. Liu J., Yuan Y., Peng X. et al. Mechanism of leptin-NPY on the onset of puberty in male offspring rats after androgen intervention during pregnancy. Front Endocrinol (Lausanne). 2023; 14: 1090552. doi: 10.3389/fendo.2023.1090552
  37. Apter D. The role of leptin in female adolescence. Ann N Y Acad Sci. 2003; 997: 64–76. doi: 10.1196/annals.1290.008
  38. Baldelli R., Carlos Dieguez C., Casanueva F. The role of leptin in reproduction: experimental and clinical aspects. Ann Med. 2002; 34 (1): 5–18. doi: 10.1080/078538902317338599
  39. Böttner A., Kratzsch J., Müller G. et al. Gender Differences of Adiponectin Levels Develop during the Progression of Puberty and Are Related to Serum Androgen Levels. J Clin Endocrinol Metab. 2004; 89 (8): 4053–61. doi: 10.1210/jc.2004-0303
  40. Matsubara M., Maruoka S., Katayose S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol. 2002; 147 (2): 173–80. doi: 10.1530/eje.0.1470173
  41. Picard A., Moulle V., Foll C. et al. Physiological and pathophysiological implications of lipidsensing in the brain. Diabetes Obes Metab. 2014; 16 (Suppl. 1): 49–55. doi: 10.1111/dom.12335
  42. Stamou M., Balasubramanian R. Hypothalamic Ceramides and the Ovarian Sympathetic System: At the Crossroads of Obesity and Puberty. Cell Metab. 2021; 33 (1): 6–8. doi: 10.1016/j.cmet.2020.11.012
  43. Heras V., Castellano J., Fernandois D. et al. Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty. Cell Metab. 2020; 32 (6): 951–966.e8. doi: 10.1016/j.cmet.2020.10.001
  44. Torres P., Luque E., Di Giorgio N. et al. Fetal Programming Effects of a Mild Food Restriction During Pregnancy in Mice: How Does It Compare to Intragestational Ghrelin Administration? Reprod Sci. 2021; 2 (12): 3547–61. doi: 10.1007/s43032-021-00574-7
  45. Facondo P., Di Lodovico E., Delbarba A. et al. The impact of diabetes mellitus type 1 on male fertility: Systematic review and meta-analysis. Andrology. 2022; 10 (3): 426–40. doi: 10.1111/andr.13140
  46. Heni M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution. Diabetologia. 2024; 67 (7): 1181–91. doi: 10.1007/s00125-024-06104-9
  47. Owen B., Bookout A., Ding X. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med. 2013; 19: 1153–6. doi: 10.1038/nm.3250
  48. Yuan X., Chen R., Zhang Y. et al. Gut microbiota: effect of pubertal status. BMC Microbiol. 2020; 20: 334. doi: 10.1186/s12866-020-02021-0
  49. Yue M., Zhang L. Exploring the Mechanistic Interplay between Gut Microbiota and Precocious Puberty: A Narrative Review. Microorganisms. 2024; 12 (2): 323. doi: 10.3390/microorganisms12020323
  50. Bo T., Liu M., Tang L. et al. Effects of High-Fat Diet During Childhood on Precocious Puberty and Gut Microbiota in Mice. Front Microbiol. 2022; 13: 930747. doi: 10.3389/fmicb.2022.930747
  51. Dai X., He Y., Xinghui Han X. et al. The Regulatory Effect of Insulin-Like Growth Factor-2 on Hypothalamic Gonadotropin-Releasing Hormone Neurons during the Pubertal Period. J Integr Neurosci. 2024; 23 (11): 208. doi: 10.31083/j.jin2311208
  52. Hill J., Elias C. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev. 2018; 98 (4): 2349–80. doi: 10.1152/physrev.00033.2017
  53. Clayton G., Borges M., Lawlor D. The impact of reproductive factors on the metabolic profile of females from menarche to menopause. Nat Commun. 2024; 15: 1103. DOI. 10.1038/s41467-023-44459-6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Мальчик с нейрогенной анорексией: длительное голодание привело к утере маскулинных черт

Скачать (152KB)
3. Рис. 2. Гены, связанные с ПС (описание в тексте) (адаптировано из [8])

Скачать (176KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).