Metabolism and puberty
- Autores: Delyagin W.M.1, Skvortsova Y.V.1, Sultanova E.R.1
-
Afiliações:
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
- Edição: Volume 36, Nº 5 (2025)
- Páginas: 14-18
- Seção: Topical Subject
- URL: https://journal-vniispk.ru/0236-3054/article/view/296090
- DOI: https://doi.org/10.29296/25877305-2025-05-02
- ID: 296090
Citar
Resumo
Human nutrition affects puberty. The nature of nutrition is determined by the socio-economic conditions of society and family, genetic and epigenetic factors. Micro- and macronutrients, hormones modulate growth and/or signal nutritional status and energy available for growth and maturation. The onset of puberty is delayed in response to chronic energy deficiency and accelerated in case of its excess. Late puberty increases the likelihood of cardiovascular, musculoskeletal and neurocognitive disorders. Early puberty is a risk factor for obesity, type 2 diabetes, and some types of cancer. The authors discuss the mechanisms determining the influence of nutrition and metabolism on sexual development, pubertal disorders in metabolic defects, chronic diseases.
Palavras-chave
Texto integral
##article.viewOnOriginalSite##Sobre autores
W. Delyagin
Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Autor responsável pela correspondência
Email: delyagin-doktor@yandex.ru
ORCID ID: 0000-0001-8149-7669
Código SPIN: 8635-8777
Professor, MD
Rússia, MoscowYu. Skvortsova
Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Email: delyagin-doktor@yandex.ru
ORCID ID: 0000-0002-0566-053X
Código SPIN: 9027-8984
Professor, MD
Rússia, MoscowE. Sultanova
Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Email: delyagin-doktor@yandex.ru
ORCID ID: 0000-0003-0319-3699
Rússia, Moscow
Bibliografia
- Румянцев А.Г., Тимакова М.В., Чечельницкая С.М. Наблюдение за развитием и состоянием здоровья детей. (Руководство для врачей). М.: Медпрактика-М, 2004; 388 с. [Rumyantsev A.G., Timakova M.V., Chechelnitskaya S.M. Monitoring the development and health of children. (Guide for doctors). M.: Medpraktika-M, 2004, 388 p. (in Russ.)].
- Argente J., Dumkel L., Kaiser U. et al. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol. 2023; 11 (3): 203–16. doi: 10.1016/S2213-8587(22)00339-4
- Amiri M., Mousavi M., Azizi F. et al. The relationship of reproductive factors with adiposity and body shape indices changes overtime: findings from a community-based study. J Transl Med. 2023; 21: 137. doi: 10.1186/s12967-023-04000-1
- Widén E., Silventoinen K., Sovio U. et al. Pubertal timing and growth influences cardiometabolic risk factors in adult males and females. Diabetes Care. 2012; 35 (4): 850–6. doi: 10.2337/dc11-1365
- Goldberg M., D’Aloisio A., O’Brien K.M. et al. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res. 2020; 22: 112. doi: 10.1186/s13058-020-01326-2
- Bauman D. Impact of obesity on female puberty and pubertal disorders. Best Pract Res Clinl Obstet Gynaecol. 2024; 91: 102400. doi: 10.1016/j.bpobgyn.2023.102400
- Zhu J., Kusa T., Chan Y-M. Genetics of Pubertal Timing. Curr Opin Pediatr. 2018; 30 (4): 532–40. doi: 10.1097/MOP.0000000000000642
- Mancini A., Magnotto J., Abreu A. Genetics of pubertal timing. Best Pract Res Clin Endocrinol Metab. 2022; 36 (1): 101618. doi: 10.1016/j.beem.2022.101618
- Anderson G., Hill J., Kaiser U. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra’s seminal work. Nat Rev Endocrinol. 2024; 20: 111–23. doi: 10.1038/s41574-023-00919-z
- Vazquez M., Daza-Dueñas S., Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc. 2021; 5 (11): bvab152. doi: 10.1210/jendso/bvab152
- Day F., Thompson D., Helgason H. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet. 2017; 49: 834–41. doi: 10.1038/ng.3841
- Kentistou K., Kaisinger L., Stankovic S. et al. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Nat Genet. 2024; 56 (7): 1397–411. doi: 10.1038/s41588-024-01798-4
- Simon D., Ba I., Mekhail N. et al. Mutations in the maternally imprinted gene MKRN3 are common in familial central precocious puberty. Eur J Endocrinol. 2016; 174 (1): 1–8. doi: 10.1530/EJE-15-0488
- Aycan Z., Savaş-Erdeve1 S., Elvan Bayramoğlu E. et al. Investigation of MKRN3 Mutation in Patients with Familial Central Precocious Puberty. J Clin Res Pediatr Endocrinol. 2018; 10 (3): 223–9. doi: 10.4274/jcrpe.5506
- Cousminer D. Pubertal timing and body mass: Genes involved. Current Opinion in Endocrine and Metabolic Research. 2020; 14: 117–26. doi: 10.1016/j.coemr.2020.06.011
- Silventoinen K., Jelenkovic A., Palviainen T. et al. The Association Between Puberty Timing and Body Mass Index in a Longitudinal Setting: The Contribution of Genetic Factors. Behav Genet. 2022; 52: 186–94. doi: 10.1007/s10519-022-10100-3
- Perry J., Day F., Elks C. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014; 514 (7520): 92–7. doi: 10.1038/nature13545
- Faienza M., Urbano F., Moscogiuri L. et al. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol. 2022; 13: 1019468. doi: 10.3389/fendo.2022.1019468
- Yu X., Xu J., Song B. et al. The role of epigenetics in women’s reproductive health: the impact of environmental factors. Front Endocrinol. 2024; 15: 1399757. doi: 10.3389/fendo.2024.1399757
- Yang Sh., Zhang Li., Khan K. et al. Identification of Environmental Compounds That May Trigger Early Female Puberty by Activating Human GnRHR and KISS1R. Endocrinology. 2024; 165 (10): bqae103. doi: 10.1210/endocr/bqae103
- Paulsen M., Ferguson-Smit A. DNA methylation in genomic imprinting, development, and disease. J Pathol. 2001; 195 (1): 97–110. doi: 10.1002/path.890
- Lopez I., Cernada M., Gakan L. et al. Small for gestational age: concept, diagnosis and neonatal characterization, follow-up and recommendations. Recién nacido pequeño para la edad gestacional: concepto, diagnóstico y caracterización neonatal, seguimiento y recomendaciones. Anales de Pediatria (English Edition). 2024; 101 (2): 124–31. doi: 10.1016/j.anpede.2024.07.012
- Suutela M., Hero M., Kosola S. et al. Prenatal, newborn and childhood factors and the timing of puberty in boys and girls. Pediatr Res. 2024; 96: 799–804. DOI: 0.1038/s41390-024-03159-7
- Maisonet M., Christensen K., Rubin C. et al. Role of prenatal characteristics and early growth on pubertal attainment of British girls. Pediatrics. 2010; 126 (3): e591–600. doi: 10.1542/peds.2009-2636
- Toppari J., Juul A. Trends in puberty timing in humans and environmental modifiers. Mol Cell Endocrinol. 2010; 324 (1-2): 39–44. doi: 10.1016/j.mce.2010.03.011
- Lee R., Oh J., Mun E. et al. Exposure to air pollution and precocious puberty: a systematic review. Ewha Med J. 2024; 47 (2): e20. doi: 10.12771/emj.2024.e20
- Leka-Emiri S., Chrousos G., Kanaka-Gantenbein Ch. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP). J Endocrinol Invest. 2017; 40: 789–802. doi: 10.1007/s40618-017-0627-9
- Cabrera S., Bright G., Frane J. et al. Age of thelarche and menarche in contemporary US females: a cross-sectional analysis. J Pediatr Endocrinol Metab. 2014; 27 (1-2): 47–51. doi: 10.1515/jpem-2013-0286
- Staiano A., Katzmarzyk P. Visceral, subcutaneous, and total fat mass accumulation in a prospective cohort of adolescents. Am J Clin Nutr. 2022; 116 (3): 780–5. doi: 10.1093/ajcn/nqac129
- Wang Z., Asokan G., Onnela J.-P. et al. Menarche and Time to Cycle Regularity Among Individuals Born Between 1950 and 2005 in the US. JAMA Netw Open. 2024; 7 (5): e2412854. doi: 10.1001/jamanetworkopen.2024.12854
- Cho H., Patel S., Rajbhandari P. Adipose tissue lipid metabolism: lipolysis. Curr Opin Genet Dev. 2023; 83: 102114. doi: 10.1016/j.gde.2023.102114
- Elias C., Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci. 2013; 70 (5): 841–62. doi: 10.1007/s00018-012-1095-1
- Ahima R., Lazar M. Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. 2008; 22 (5): 1023–31. doi: 10.1210/me.2007-0529
- Casado M., Collado-Pérez R., Frago L. et al. Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci. 2023; 24 (2): 1422. doi: 10.3390/ijms24021422
- Malik I., Durairajanayagam D., Singh H. Leptin and its actions on reproduction in males. Asian J Androl. 2019; 21 (3): 296–9. doi: 10.4103/aja.aja_98_18
- Liu J., Yuan Y., Peng X. et al. Mechanism of leptin-NPY on the onset of puberty in male offspring rats after androgen intervention during pregnancy. Front Endocrinol (Lausanne). 2023; 14: 1090552. doi: 10.3389/fendo.2023.1090552
- Apter D. The role of leptin in female adolescence. Ann N Y Acad Sci. 2003; 997: 64–76. doi: 10.1196/annals.1290.008
- Baldelli R., Carlos Dieguez C., Casanueva F. The role of leptin in reproduction: experimental and clinical aspects. Ann Med. 2002; 34 (1): 5–18. doi: 10.1080/078538902317338599
- Böttner A., Kratzsch J., Müller G. et al. Gender Differences of Adiponectin Levels Develop during the Progression of Puberty and Are Related to Serum Androgen Levels. J Clin Endocrinol Metab. 2004; 89 (8): 4053–61. doi: 10.1210/jc.2004-0303
- Matsubara M., Maruoka S., Katayose S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol. 2002; 147 (2): 173–80. doi: 10.1530/eje.0.1470173
- Picard A., Moulle V., Foll C. et al. Physiological and pathophysiological implications of lipidsensing in the brain. Diabetes Obes Metab. 2014; 16 (Suppl. 1): 49–55. doi: 10.1111/dom.12335
- Stamou M., Balasubramanian R. Hypothalamic Ceramides and the Ovarian Sympathetic System: At the Crossroads of Obesity and Puberty. Cell Metab. 2021; 33 (1): 6–8. doi: 10.1016/j.cmet.2020.11.012
- Heras V., Castellano J., Fernandois D. et al. Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty. Cell Metab. 2020; 32 (6): 951–966.e8. doi: 10.1016/j.cmet.2020.10.001
- Torres P., Luque E., Di Giorgio N. et al. Fetal Programming Effects of a Mild Food Restriction During Pregnancy in Mice: How Does It Compare to Intragestational Ghrelin Administration? Reprod Sci. 2021; 2 (12): 3547–61. doi: 10.1007/s43032-021-00574-7
- Facondo P., Di Lodovico E., Delbarba A. et al. The impact of diabetes mellitus type 1 on male fertility: Systematic review and meta-analysis. Andrology. 2022; 10 (3): 426–40. doi: 10.1111/andr.13140
- Heni M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution. Diabetologia. 2024; 67 (7): 1181–91. doi: 10.1007/s00125-024-06104-9
- Owen B., Bookout A., Ding X. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med. 2013; 19: 1153–6. doi: 10.1038/nm.3250
- Yuan X., Chen R., Zhang Y. et al. Gut microbiota: effect of pubertal status. BMC Microbiol. 2020; 20: 334. doi: 10.1186/s12866-020-02021-0
- Yue M., Zhang L. Exploring the Mechanistic Interplay between Gut Microbiota and Precocious Puberty: A Narrative Review. Microorganisms. 2024; 12 (2): 323. doi: 10.3390/microorganisms12020323
- Bo T., Liu M., Tang L. et al. Effects of High-Fat Diet During Childhood on Precocious Puberty and Gut Microbiota in Mice. Front Microbiol. 2022; 13: 930747. doi: 10.3389/fmicb.2022.930747
- Dai X., He Y., Xinghui Han X. et al. The Regulatory Effect of Insulin-Like Growth Factor-2 on Hypothalamic Gonadotropin-Releasing Hormone Neurons during the Pubertal Period. J Integr Neurosci. 2024; 23 (11): 208. doi: 10.31083/j.jin2311208
- Hill J., Elias C. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev. 2018; 98 (4): 2349–80. doi: 10.1152/physrev.00033.2017
- Clayton G., Borges M., Lawlor D. The impact of reproductive factors on the metabolic profile of females from menarche to menopause. Nat Commun. 2024; 15: 1103. DOI. 10.1038/s41467-023-44459-6
Arquivos suplementares
