Simple tiles and attractors
- Authors: Zaitseva T.I.1,2
-
Affiliations:
- Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 211, No 9 (2020)
- Pages: 24-59
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133343
- DOI: https://doi.org/10.4213/sm9169
- ID: 133343
Cite item
Abstract
Keywords
About the authors
Tatyana Ivanovna Zaitseva
Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematicswithout scientific degree, no status
References
- K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
- K. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases and self-similar tilings of $mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp.
- M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
- T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57
- J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747
- I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1997, xvi+218 pp.
- C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., 53:1 (2012), 219–224
- А. С. Войнов, “К вопросу о структуре самоаффинных выпуклых тел”, Матем. сб., 204:8 (2013), 41–50
- C. T. Long, “Addition theorems for sets of integers”, Pacific J. Math., 23:1 (1967), 107–112
- N. G. de Bruijn, “On number systems”, Nieuw Arch. Wisk. (3), 4 (1956), 15–17
- O. Bodini, E. Rivals, “Tiling an interval of the discrete line”, Combinatorial pattern matching (Barcelona, 2006), Lecture Notes in Comput. Sci., 4009, Springer, Berlin, 117–128
- R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Tech. Rep. W91-14, Math. Inst., Univ. of Leiden, 1991, 16 pp.
- J. C. Lagarias, Yang Wang, “Tiling the line with translates of one tile”, Invent. Math., 124:1-3 (1996), 341–365
- N. G. de Bruijn, “On bases for the set of integers”, Publ. Math. Debrecen, 1 (1950), 232–242
- M. N. Kolountzakis, M. Matolcsi, Tilings by translation
- A. Kravchenko, D. Mekhontsev, IFS Builder 3d, software
Supplementary files
