Simple tiles and attractors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study self-similar attractors in the space $\mathbb R^d$, that is, self-similar compact sets defined by several affine operators with the same linear part. The special case of attractors when the matrix $M$ of the linear part and the shifts of the affine operators are integer, is well known in the literature due to the many applications in the theory of wavelets and in approximation theory. In this case, if an attractor has measure one it is called a tile. We classify self-similar attractors and tiles in the case when they are either polyhedra or a union of finitely many polyhedra. We obtain a complete description of the matrices $M$ and the digit sets for parallelepiped tiles and for convex tiles in arbitrary dimensions. It is proved that on a two-dimensional plane, every polygonal tile (not necessarily convex) must be a parallelogram. Nontrivial examples of multidimensional tiles which are a finite union of polyhedra are given, and in the case $d=1$ a complete classification is provided for them. Applications to orthonormal Haar systems in $\mathbb R^d$ and to integer univariate tiles are considered. Bibliography: 18 titles.

About the authors

Tatyana Ivanovna Zaitseva

Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

without scientific degree, no status

References

  1. K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
  2. K. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases and self-similar tilings of $mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568
  3. И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
  4. C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp.
  5. M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
  6. T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57
  7. J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747
  8. I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1997, xvi+218 pp.
  9. C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., 53:1 (2012), 219–224
  10. А. С. Войнов, “К вопросу о структуре самоаффинных выпуклых тел”, Матем. сб., 204:8 (2013), 41–50
  11. C. T. Long, “Addition theorems for sets of integers”, Pacific J. Math., 23:1 (1967), 107–112
  12. N. G. de Bruijn, “On number systems”, Nieuw Arch. Wisk. (3), 4 (1956), 15–17
  13. O. Bodini, E. Rivals, “Tiling an interval of the discrete line”, Combinatorial pattern matching (Barcelona, 2006), Lecture Notes in Comput. Sci., 4009, Springer, Berlin, 117–128
  14. R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Tech. Rep. W91-14, Math. Inst., Univ. of Leiden, 1991, 16 pp.
  15. J. C. Lagarias, Yang Wang, “Tiling the line with translates of one tile”, Invent. Math., 124:1-3 (1996), 341–365
  16. N. G. de Bruijn, “On bases for the set of integers”, Publ. Math. Debrecen, 1 (1950), 232–242
  17. M. N. Kolountzakis, M. Matolcsi, Tilings by translation
  18. A. Kravchenko, D. Mekhontsev, IFS Builder 3d, software

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Zaitseva T.I.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».