Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 211, № 7 (2020)

Обложка

Устойчивость аналога течения Пуазейля в МГД модели несжимаемой полимерной жидкости

Блохин А.М., Ткачёв Д.Л.

Аннотация

Исследуется обобщение модели Покровского–Виноградова для течений растворов и расплавов несжимаемой вязкоупругой полимерной среды на случай неизотермических течений в бесконечном плоском канале при воздействии магнитного поля. Для линеаризованной проблемы (основное решение – аналог течения Пуазейля для вязкой жидкости в модели Навье–Стокса) найдено формальное асимптотическое представление для собственных чисел при возрастании их модуля. Получено необходимое условие асимптотической устойчивости аналога сдвигового течения Пуазейля.Библиография: 22 названия.
Математический сборник. 2020;211(7):3-23
pages 3-23 views

О производной категории $\mathrm{IGr}(3;8)$

Гусева Л.А.

Аннотация

Cтроится полный исключительный набор, состоящий из векторных расслоений, в ограниченной производной категории когерентных пучков на грассманиане $\mathrm{IGr}(3,8)$ изотропных подпространств размерности 3 в симплектическом векторном пространстве размерности 8.Библиография: 16 названий.
Математический сборник. 2020;211(7):24-59
pages 24-59 views

Закон нуля или единицы первого порядка для равномерной модели случайного графа

Жуковский М.Е., Свешников Н.М.

Аннотация

Рассматривается случайный граф Эрдёша–Реньи в равномерной модели $G(n,m)$, где $m=m(n)$ – такая последовательность целых неотрицательных чисел, что $m(n)\sim cn^{\alpha}<(2-\varepsilon)n^2$ для некоторых $c>0$, $\alpha\in[0,2]$ и $\varepsilon>0$. Доказано, что $G(n,m)$ подчиняется закону нуля или единицы для языка первого порядка тогда и только тогда, когда либо $\alpha\in\{0,2\}$, либо $\alpha$ иррационально, либо $\alpha\in(0,1)$ и $\alpha$ не принадлежит множеству чисел вида $1-1/\ell$, $\ell\in\mathbb{N}$.Библиография: 15 названий.
Математический сборник. 2020;211(7):60-71
pages 60-71 views

Новая бесконечная серия компонент модулей полустабильных пучков ранга 2 на $\mathbb{P}^{3}$ с особенностями смешанной размерности

Иванов А.Н.

Аннотация

Описывается новая бесконечная серия неприводимых компонент схем модулей Гизекера–Маруямы $\mathscr{M}(k)$, $k \geq 3$, полустабильных пучков ранга $2$ на $\mathbb{P}^{3}$ с классами Черна $c_1=0$, $c_2=k$, $c_3=0$, общие точки которых соответствуют пучкам с особенностями смешанной размерности. Пучки этих компонент строятся с помощью элементарных преобразований стабильных и собственно $\mu$-полустабильных рефлексивных пучков вдоль дизъюнктных объединений наборов точек и гладких неприводимых рациональных кривых или полных пересечений в $\mathbb{P}^{3}$. Как частный случай этой серии описывается новая компонента схемы $\mathscr{M}(3)$.Библиография: 12 названий.
Математический сборник. 2020;211(7):72-92
pages 72-92 views

Эллиптический биллиард в поле потенциальных сил: классификация движений, топологический анализ

Кобцев И.Ф.

Аннотация

Рассматривается абсолютно упругий биллиард в эллипсе $\frac{x^2}{a}+\frac{y^2}{b}=1$, $a>b>0$, с потенциалом $\frac{k}{2}(x^2+y^2)+\frac{\alpha}{2x^2}+\frac{\beta}{2y^2}$, $a \geq 0$, $\beta \geq 0$. Эта динамическая система является интегрируемой и имеет две степени свободы. В статье получены изоэнергетические инварианты грубой и тонкой лиувиллевой эквивалентности, а также проведен сравнительный анализ других систем, известных из механики твердого тела. Для получения результатов применен метод разделения переменных и построен новый способ, эквивалентный бифуркационной диаграмме, но не требующий ее прямого построения.Библиография: 17 названий.
Математический сборник. 2020;211(7):93-120
pages 93-120 views

Аналитические решения уравнений свертки на выпуклых множествах в комплексной плоскости с препятствием, открытым на границе

Мелихов С.Н., Ханина Л.В.

Аннотация

Доказаны условия, в том числе критерии, существования линейного непрерывного правого обратного к сюръективному оператору свертки, действующему в пространствах ростков функций, аналитических на выпуклых подмножествах комплексной плоскости со счетным базисом окрестностей из выпуклых областей. Они сформулированы в терминах существования специальных семейств субгармонических функций и граничного поведения выпуклых конформных отображений, связанных с указанными множествами.Библиография: 50 названий.
Математический сборник. 2020;211(7):121-150
pages 121-150 views

Кодировка траекторий и инвариантных мер

Осипенко Г.С.

Аннотация

Рассматривается дискретная динамическая система, порожденная гомеоморфизмом $f$ на компактном многообразии $M$. Пусть $C=\{M(i)\}$ – конечное покрытие многообразия $M$ замкнутыми ячейками. Символический образ динамической системы есть ориентированный граф $G$ с вершинами, соответствующими ячейкам, а вершины $i$ и $j$ связаны дугой $i\to j$, если образ $f(M(i))$ пересекает $M(j)$. Показано, что множество путей символического образа сходится к множеству траекторий системы в тихоновской топологии, когда диаметр покрытия стремится к нулю. Пусть цикл на $G$ проходит через различные вершины, простой поток есть равномерное распределение на дугах этого цикла. Показано, что простые потоки сходятся к эргодическим мерам в слабой топологии, когда диаметр покрытия стремится к нулю. Библиография: 28 названий.
Математический сборник. 2020;211(7):151-176
pages 151-176 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».